Skip to main content
Log in

On the Differences in the Mechanisms of Adsorption of Aromatic Heterocycles from Water–Acetonitrile Solutions on Octadecyl-Bonded Silica Gels

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

Adsorption of some 1,3,4-oxadiazoles and 1,2,4,5-tetrazines from water–acetonitrile solutions on Luna C18 and Discovery C18 silica gels with grafted octadecyl groups has been studied in a wide range of compositions at temperatures of 313.15–333.15 K. The comparative analysis of the liquid-phase adsorption of the heterocycles has revealed a number of differences between the mechanisms of binding molecules of the studied compounds by the surfaces of these octadecyl-derivatives of silica gel. The log–log dependences of the retention factor on the molar fraction of acetonitrile in the solutions are strictly linear only for adsorption on Luna C18 silica gel, which is characterized by an increased hydrophobicity. For the adsorption of the studied heterocycles on Discovery C18 silica gel, the concentration dependences of the retention at low and high acetonitrile concentrations in the solution are described by quadratic functions and characterized by higher retention values as compared with those for the linear dependence because of the lower hydrophobicity of this silica gel. It has been found that the surface layer of Luna C18 modified silica gel is enriched with acetonitrile molecules to a higher extent than the surface layer of Discovery C18 silica gel. It has been shown that one adsorbed molecule of 1,3,4-oxadiazoles and 1,2,4,5-tetrazines displaces three and two molecules of pre-adsorbed acetonitrile from the surfaces of Luna C18 and Discovery C18 silica gels, respectively. Linear correlation equations have been proposed for calculating the retention of the studied heterocycles on Luna C18 and Discovery C18 silica gels from mobile phases of arbitrary compositions at different temperatures of chromatographic columns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Žuvela, P., Skoczylas, M., Liu, J.J., Bączek, T., Kaliszan, R., Wong, M.W., and Buszewski, B., Chem. Rev., 2019, vol. 119, p. 3674.

    Article  Google Scholar 

  2. Sandron, S., Rojas, A., Wilson, R., Davies, N.W., Haddad, P.R., Shellie, R.A., Nesterenko, P.N., Kelleher, B.P., and Paull, B., Environ. Sci.: Process. Impacts, 2015, vol. 17, p. 1531.

    CAS  Google Scholar 

  3. Janas, P., Bocian, S., Jandera, P., Kowalkowski, T., and Buszewski, B., J. Chromatogr. A, 2015, vol. 1429, p. 198.

    Article  Google Scholar 

  4. Taraba, L., Kŕižek, T., Kozlik, P., Hodek, O., and Coufal, P., J. Sep. Sci., 2018, vol. 41, p. 2886.

    Article  CAS  Google Scholar 

  5. Deineka, V.I., Kul’chenko, Ya.Yu., and Deineka, L.A., Russ. J. Phys. Chem. A, 2019, vol. 93, p. 572.

    Article  CAS  Google Scholar 

  6. Wiczling, P., Kubik, L., and Kaliszan, R., Anal. Chem., 2015, vol. 87, p. 7241.

    Article  CAS  Google Scholar 

  7. Sancho, M.I., Blanco, S.E., and Castro, E.A., J. Chem. Eng. Data, 2010, vol. 55, p. 4768.

    Article  CAS  Google Scholar 

  8. Rehl, B., Li, Z., and Gibbs, J.M., Langmuir, 2018, vol. 34, p. 4445.

    Article  CAS  Google Scholar 

  9. Nekrasova, N.A. and Kurbatova, S.V., Russ. J. Phys. Chem. A, 2019, vol. 93, p. 67.

    Article  CAS  Google Scholar 

  10. Rybka, J., Holtzel, A., Steinhoff, A., and Tallarek, U., J. Phys. Chem. C, 2019, vol. 123, p. 3672.

    Article  CAS  Google Scholar 

  11. Petrović, S.M. and Lomić, S.M., Chromatografia, 1989, vol. 27, p. 378.

    Article  Google Scholar 

  12. Lee, C.S. and Cheong, W.J., J. Chromatogr. A, 1999, vol. 848, p. 9.

    Article  CAS  Google Scholar 

  13. Kurbatova, S.V., Saifutdinov, B.R., Larionov, O.G., and Meshkovaya, V.V., Russ. J. Phys. Chem. A, 2009, vol. 83, p. 471.

    Article  CAS  Google Scholar 

  14. Kurbatova, S.V. and Saifutdinov, B.R., Russ. J. Phys. Chem. A, 2009, vol. 83, p. 1223.

    Article  CAS  Google Scholar 

  15. Saifutdinov, B.R., Kurbatova, S.V., and Emel’yanova, N.S., Russ. J. Phys. Chem. A, 2010, vol. 84, p. 673.

    Article  CAS  Google Scholar 

  16. Shafigulin, R.V., Myakishev, A.A., Il’ina, E.A., Il’in, M.M., Davankov, V.A., and Bulanova, A.V., Russ. J. Phys. Chem. A, 2011, vol. 85, p. 1322.

    Article  Google Scholar 

  17. Saifutdinov, B.R., Izv. Akad. Nauk, Ser. Khim., 2014, no. 12, p. 2609.

  18. Polunin, K.E., Polunina, I.A., and Roldughin, V.I., Colloid J., 2015, vol. 77, p. 327.

    Article  CAS  Google Scholar 

  19. Nekrasova, N.A. and Kurbatova, S.V., J. Chromatogr. A, 2017, vol. 1492, p. 55.

    Article  CAS  Google Scholar 

  20. Karaseva, I.N., Karasev, M.O., Nechaeva, O.N., and Kurbatova, S.V., Russ. J. Phys. Chem. A, 2019, vol. 93, p. 160.

    Article  CAS  Google Scholar 

  21. Visky, D., Neyden, Y.V., Ivanyi, T., Baten, P., Beer, J.D., Kovács, Z., Noszál, B., Dehouck, P., Roets, E., Massart, D.L., and Hoogmartens, J., J. Chromatogr. A, 2003, vol. 1012, p. 11.

    Article  CAS  Google Scholar 

  22. Caiali, E., David, V., Aboul-Enein, H.Y., and Moldoveanu, S.C., J. Chromatogr. A, 2016, vol. 1435, p. 85.

    Article  CAS  Google Scholar 

  23. Caiali, E., Moldoveanu, S.C., and David, V., Rev. Roum. Chim., 2017, vol. 62, p. 629.

    Google Scholar 

  24. www.phenomenex.com/Products/HPLCDetail/luna#.

  25. www.supelco.com.tw/B-1%2013-66.pdf.

Download references

ACKNOWLEDGMENTS

We are grateful to Associate Professor of the Department of Organic Chemistry of Samara State Technical University A.V. Yudashkin for giving us the possibility to use heterocycles 15, which he has synthesized, and the Center for Collective Use of the Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, for allowing us to use experimental equipment.

Funding

This work was carried out within the framework of a state order to the Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences.

B.R. Saifutdinov is grateful to the Russian Foundation for Basic Research (project no. 17-03-01308-a), the Council for Grants of the President of the Russian Federation for State Support of Young Russian Scientists and State Support of Leading Scientific Schools of the Russian Federation (project no. MK-5757.2018.3) and the Ministry of Science and Higher Education of the Russian Federation (project no. 4.7150.2017/8.9) for partial financial support of the performed studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. R. Saifutdinov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by A. Kirilin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saifutdinov, B.R., Buryak, A.K. On the Differences in the Mechanisms of Adsorption of Aromatic Heterocycles from Water–Acetonitrile Solutions on Octadecyl-Bonded Silica Gels. Colloid J 81, 555–562 (2019). https://doi.org/10.1134/S1061933X19050107

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X19050107

Navigation