Skip to main content
Log in

Physicochemical Grounds for Application of Schungite for Neutralization of 1,1-Dimethylhydrazine in Wastewater

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

Chromatography–mass spectrometry and MALDI mass spectrometry have been used to study the interaction of 1,1-dimethylhydrazine and products of its oxidation with the surface of mineral schungite in aqueous solutions. A comparative analysis has been performed for organic compounds contained in initial and equilibrium 1,1-dimethylhydrazine solutions brought in contact with schungite, as well as compounds desorbed from the modified surfaces of the mineral and its inorganic components. The analysis has revealed the efficiency of schungite as a low-cost and environmentally friendly sorbent capable of catalyzing the profound oxidation of 1,1-dimethylhydrazine and products of its transformation to nontoxic low-molecularmass substances. Environmentally safe methods have been proposed for the regeneration of used schungite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Spravochnik po toksikologii i gigienicheskim normativam (PDK) potentsial’no opasnykh khimicheskikh veshchestv (A Handbook of Toxicology and Hygienic Norms (MPC) of Potentially Dangerous Chemical Compounds), Kushneva, V.S. and Gorshkova, R.B., Eds., Moscow: AT, 1999.

  2. Schmidt, W.E., Hydrazine and Its Derivatives, New York: Wiley, 2001.

    Google Scholar 

  3. Ioffe, B.V., Kuznetsov, M.A., and Potekhin, A.A., Khimiya organicheskikh proizvodnykh gidrazina (Chemistry of Organic Hydrazine Derivatives), Leningrad: Khimiya, 1980.

    Google Scholar 

  4. Buryak, A.K. and Serdyuk, T.M., Usp. Khim., 2013, vol. 82, p. 369.

    Article  Google Scholar 

  5. Ekologicheskii monitoring raketno-kosmicheskoi deyatel’nosti. Printsipy i metody (Ecological Monitoring of Rocket and Space Activities. Principles and Methods), Kasimov, N.S. and Shpigun, O.A., Eds., Moscow: Restart, 2011.

  6. Smolenkov, A.D., Poputnikova, T.O., Smirnov, R.S., Rodin, I.A., and Shpigun, O.A., Teor. Prikl. Ekol., 2013, no. 2, p. 63.

    Google Scholar 

  7. Smolenkov, A.D. and Shpigun, O.K., Talanta, 2012, vol. 102, p. 93.

    Article  CAS  Google Scholar 

  8. Kolesnikov, S.V., Okislenie nesimmetrichnogo dimetilgidrazina i identifikatsiya produktov ego prevrashcheniya pri prolivakh (Oxidation of Asymmetric Dimethylhydrazine and Identification of the Reaction Products at Spills), Novosibirsk: SibAK, 2014.

    Google Scholar 

  9. Kalinin, A.I. and Koroleva, E.B., Doochistka stochnykh vod s ispol’zovaniem prirodnogo minerala shungita (Additional Wastewater Treatment with the Use of Natural Mineral Shungite), Leningrad: Stroiizdat, 1989.

    Google Scholar 

  10. Akimbaeva, A.M., Neftekhimiya, 2007, vol. 47, p. 225.

    CAS  Google Scholar 

  11. Polunina, I.A., Vysotskii, V.V., Senchikhin, I.N., Goncharova, I.S., Petukhova, G.A., and Buryak, A.K., Colloid J., 2017, vol. 79, p. 244.

    Article  CAS  Google Scholar 

  12. Karnaeva, A.E., Yartsev, S.D., Polunina, I.A., and Buryak, A.K., Sorbts. Khromatogr. Protsessy, 2017, vol. 17, p. 196.

    Google Scholar 

  13. Kabanov, P.M., Muratovskaya, O.B., Tataurova, O.G., Ul’yanov, A.V., and Buryak, A.K., Sorbts. Khromatogr. Protsessy, 2006, vol. 6, p. 218.

    Google Scholar 

  14. Golub, S.L., Ul’yanov, A.V., Buryak, A.K., Lugovskaya, I.G., Anufrieva, S.I., and Dubinchuk, V.T., Sorbts. Khromatogr. Protsessy, 2006, vol. 6, p. 748.

    Google Scholar 

  15. Golub, S.L., Ul’yanov, A.V., Buryak, A.K., Lugovskaya, I.G., Anufrieva, S.I., and Dubinchuk, V.T., Sorbts. Khromatogr. Protsessy, 2006, vol. 6, p. 855.

    Google Scholar 

  16. Shungity−novoe uglerodistoe syr’e (Shungites as a New Carbon Raw), Sokolov, V.A., Kalinin, Yu.K., and Dyukkiev, E.F., Eds., Petrozavodsk: Kareliya, 1984.

  17. Berezkin, V.I., Uglerod. Zamknutye nanochastitsy, makrostruktury, materialy (Carbon. Closed Nanoparticles, Macrostructures, Materials), St. Petersburg: AtrErgo, 2013.

    Google Scholar 

  18. Terent’ev, P.B. and Stankyavichus, P.B., Mass-spektry biologicheski aktivnykh azotistykh osnovanii (Mass Spectra of Biologically Active Nitrogen Bases), Vilnus: Mokslas, 1987.

    Google Scholar 

  19. Polunin, K.E., Goncharova, I.S., Ul’yanov, A.V., Polunina, I.A., and Buryak, A.K., Colloid J., 2017, vol. 79, p. 250.

    Article  CAS  Google Scholar 

  20. Buryak, A.K. and Serdyuk, T.M., Fizikokhim. Poverkh. Zashch. Mater., 2011, vol. 47, p. 586.

    Google Scholar 

  21. Rozhkova, N.N., Nanouglerod shungitov (Nanocarbon of Shungites), Petrozavodsk: KarNTs RAN, 2011.

    Google Scholar 

  22. Emel’yanova, G.I., Atyaksheva, L.F., and Sorochinskii, V.V., Vestn. Mosk. Univ., Ser. 2: Khim., 1983, vol. 24, p. 364.

    Google Scholar 

  23. Elizarova, G.L., Matvienko, L.G., Pestunova, O.P., Babushkin, D.E., and Parmon, V.N., Kinet. Katal., 1998, vol. 39, p. 49.

    Google Scholar 

  24. RF Patent 2253520, Byull. Izobret., 2005, no. 16.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Buryak.

Additional information

Original Russian Text © A.V. Ul’yanov, I.A. Polunina, K.E. Polunin, A.K. Buryak, 2018, published in Kolloidnyi Zhurnal, 2018, Vol. 80, No. 1, pp. 102–112.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ul’yanov, A.V., Polunina, I.A., Polunin, K.E. et al. Physicochemical Grounds for Application of Schungite for Neutralization of 1,1-Dimethylhydrazine in Wastewater. Colloid J 80, 96–106 (2018). https://doi.org/10.1134/S1061933X18010131

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X18010131

Navigation