Skip to main content
Log in

Determination of the fiber-size distribution function in polydisperse dielectric fibrous materials

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

A simple method has been proposed for determining the average fiber length in unit volume of a polydisperse fibrous material as depending on fiber diameter. The method consists in the measurement of light attenuation as a function of the distance from an examined sample. The method entails comparison of the measured energy fluxes that reach a detector before and after scattering by an examined fibrous material sample and uses an integral relation that expresses the intensity of light transmitted through a random medium via the electric-field correlation function. Formulas have been found for the electric-field correlation function after the passage through a layer of a polydisperse fibrous material with random arrangement and orientation of fibers. The obtained correlation function enables one to derive an integral equation that expresses the logarithmic ratio of the energy fluxes reaching the radiation detector before and after the passage through a scattering medium via the fiber size-distribution function. Solution of this integral equation makes it possible to determine the fiber-size distribution function from the light attenuation measured as depending on the distance from the point of observation. Experiments have been carried out for several fibrous filters and relevant calculations have been presented. The results of the solution of the integral equation agree with the data obtained by other experimental methods and with visual processing of electron micrographs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chawla, K.K., Fibrous Materials, Cambridge: Cambridge Univ. Press, 1988.

    Google Scholar 

  2. Proizvodstvo steklyannykh volokon i tkanei (Production of Glass Fibers and Fabrics), Khodakovskii, M.D., Ed., Moscow: Khimiya, 1973.

    Google Scholar 

  3. Lopatin, V.N., Priezzhev, A.V., Aponasenko, A.D., et al., Metody svetorasseyaniya v analize vodnykh dispersnykh biologicheskikh sred (Light Scattering Methods in Analysis of Aqueous Disperse Biological Media), Moscow: Nauka, 2004.

    Google Scholar 

  4. Schartl, W., Light Scattering from Polymer Solutions and Nanoparticle Dispersions, Berlin: Springer, 2007.

    Google Scholar 

  5. Light Scattering Reviews, Kochanovsky, A.A., Ed., Chichester: Praxis, 2006.

    Google Scholar 

  6. Svergun, D.I. and Feigin, L.A., Rentgenovskoe i neitronnoe malouglovoe rasseyanie (Small-Angle X-Ray and Neutron Scattering), Moscow: Nauka, 1986.

    Google Scholar 

  7. Tuchin, V.V., Usp. Fiz. Nauk, 1997, vol. 167, p. 517.

    Article  Google Scholar 

  8. Sharma, S.K. and Somerford, D.J., Light Scattering by Optically Soft Particles. Theory and Applications, Chichester: Praxis, 2006.

    Google Scholar 

  9. Gurvich, A.S., Kon, A.I., Mironov, V.L., and Khmelevtsov, S.S., Lazernoe izluchenie v turbulentnoi atmosfere (Laser Radiation in Turbulent Atmosphere), Moscow: Nauka, 1976.

    Google Scholar 

  10. Ishimaru, A., Wave Propagation and Scattering Media, New York: Academic, 1978, vol. 2.

    Google Scholar 

  11. Vinogradova, M.B., Rudenko, O.V., and Sukhorukov, A.P., Teoriya voln (Wave Theory), Moscow: Nauka, 1979.

    Google Scholar 

  12. Van de Hulst, H., Light Scattering by Small Particles, New York: Wiley, 1957.

    Google Scholar 

  13. Klett, J.D. and Sutherland, R.A., Appl. Opt., 1992, vol. 31, p. 373.

    Article  CAS  Google Scholar 

  14. Moore, D.M., Dudley, F., and Latimer, P., J. Opt. Soc. Am., 1968, vol. 58, p. 281.

    Article  Google Scholar 

  15. Booker, H.G., Ratcliffe, J.A., and Shin, D.H., Philos. Trans. R. Soc. London A, 1950, vol. 242, p. 579.

    Article  Google Scholar 

  16. Ratcliffe, J.A., Rep. Prog. Phys., 1956, vol. 19, p. 188.

    Article  Google Scholar 

  17. Denisov, N.G., Izv. Vyssh. Uchebn. Zaved., Radiofiz., 1961, vol. 4, p. 630.

    Google Scholar 

  18. Barabanenkov, Yu.N., Kravtsov, Yu.A., Rytov, S.M., et al., Usp. Fiz. Nauk, 1970, vol. 102, p. 3.

    Article  Google Scholar 

  19. Prokhorov, A.M., Bunkin, F.V., Gochelashvili, K.S., et al., Usp. Fiz. Nauk, 1974, vol. 114, p. 415.

    Article  Google Scholar 

  20. Ryabukho, V.P. and Chausskii, A.A., Pis’ma Zh. Tekh. Fiz., 1997, vol. 23, no. 19, p. 47.

    CAS  Google Scholar 

  21. Tian, Y., Guo, J., Wang, R., et al., Opt. Express, 2011, vol. 19, p. 18216.

    Article  Google Scholar 

  22. Piescionek, B., Green, R.J., and Dolgobrodov, S.G., J. Opt. Soc. Am. A, 2002, vol. 19, p. 1491.

    Article  Google Scholar 

  23. Dolin, L.S., Izv. Vyssh. Uchebn. Zaved., Radiofiz., 1964, vol. 7, p. 380.

    Google Scholar 

  24. Klyatskin, V.I. and Tatarskii, V.I., Izv. Vyssh. Uchebn. Zaved., Radiofiz., 1970, vol. 13, p. 1061.

    Google Scholar 

  25. Kirsch A.A. and Stechkina I.B., in Fundamentals of Aerosol Science, ed. by D.T. Shaw, New York: Wiley & Sons, 1978, p.165.

    Google Scholar 

  26. Tikhonov, A.N. and Arsenin, V.Ya., Metody resheniya nekorrektnykh zadach (Methods for Solving Ill-Correct Problems), Moscow: Nauka, 1979.

    Google Scholar 

  27. Werner, R.M. and Clarenburg, L.A., Ind. Eng. Chem., Process Des. Dev., 1965, vol. 4, p. 288.

    Article  CAS  Google Scholar 

  28. Kolmogorov, A.N., Dokl. Akad. Nauk SSSR, 1941, vol. 31, p. 99.

    Google Scholar 

  29. Adamson, A., The Physical Chemistry of Surfaces, New York: Wiley, 1976.

    Google Scholar 

  30. Karnaukhov, A.P., Adsorbtsiya. Tekstura dispersnykh i poristykh materialov (Adsorption. The Texture of Disperse and Porous Materials), Novosibirsk: Nauka, 1999.

    Google Scholar 

  31. Shifrin, K.S. and Tonna, G., Adv. Geophys., 1993, vol. 34, p. 175.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.L. Chernyakov, A.A. Kirsh, 2014, published in Kolloidnyi Zhurnal, 2014, Vol. 76, No. 2, pp. 228–242.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chernyakov, A.L., Kirsh, A.A. Determination of the fiber-size distribution function in polydisperse dielectric fibrous materials. Colloid J 76, 207–220 (2014). https://doi.org/10.1134/S1061933X14010049

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X14010049

Navigation