Skip to main content
Log in

Nanocomposite material with immobilized acid-base dyes conjugated with polysaccharides

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

Water-soluble acid-base dyes xylenol orange and methyl red are linked by covalent bonds to chitosan macromolecules; neutral dye red is bound to carboxymethyl cellulose to prevent their washing-off from silicate matrix. Dye conjugates were then immobilized by modified sol-gel method using silicate precursor compatible with polysaccharides. Synthesized hybrid nanocomposite materials are optically transparent, which makes it possible to apply them to develop sensors for measuring pH. Spectral characteristics of dyes, their conjugates, and prepared nanocomposites with silicate matrix are studied in detail. It is shown that xylenol orange, which is linked with chitosan by covalent bonds, is the most suitable dye for the development of sensor materials because the conjugation by carboxyl groups, which do not directly bound with chromophore center, does not deteriorate the spectral properties of this dye. In the cases of methyl red and neutral red dyes, undesirable changes in their properties in the course of conjugation are caused by the covalent binding by functional groups, which are auxochromes directly affecting all spectral characteristics of dyes. An increase in the solubility of polysaccharide in water can also positively affect the covalent binding of dyes with chitosan that allows polysaccharide to be used in neutral and alkaline media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eggins, B., Khimicheskie i biologicheskie sensory (Chemical and Biological Sensors), Moscow: Tekhnosfera, 2005.

    Google Scholar 

  2. Biran, I. and Walt, D.R., in Optical Biosensors: Present and Future, Ligler, F.S. and Taitt, C.A.R., Eds., London: Elsevier Science, 2002, p. 5.

    Google Scholar 

  3. Sassolas, A., Leca-Bouvier, B.D., and Blum, L.J., Chem. Rev., 2007, vol. 108, p. 109.

    Article  Google Scholar 

  4. Ng, J.H. and Ilag, L.L., Biotechnol. Annu. Rev., 2003, vol. 9, p. 149.

    Google Scholar 

  5. Lee, Y.E.K., Smith, R., and Kopelman, R., Annu. Rev. Anal. Chem., 2009, vol. 2, p. 76.

    Google Scholar 

  6. Chechetkin, V.R., Prokopenko, D.V., Makarov, A.A., and Zasedatelev, A.S., Ross. Nanotekhnol., 2006, vol. 1, nos. 1–2, p. 13.

    Google Scholar 

  7. Carmeliet, P. and Jain, R.K., Nature (London), 2000, vol. 407, p. 249.

    Article  CAS  Google Scholar 

  8. Wang, L., Wang, K.M., Santra, S., et al., Anal. Chem., 2006, vol. 78, p. 646.

    Article  Google Scholar 

  9. Burns, A., Ow, H., and Wiesner, U., Chem. Soc. Rev., 2006, vol. 35, p. 1028.

    Article  CAS  Google Scholar 

  10. Cattrall, R.W., Chemical Sensors, Oxford: Oxford Univ. Press, 1997.

    Google Scholar 

  11. Jeronimo, P.C.A., Araujo, A.N., and Conceitpo, B.S.M., Talanta, 2007, vol. 72, p. 13.

    Article  CAS  Google Scholar 

  12. Wang, L. and Tan, W.H., Nano Lett., 2006, vol. 6, p. 84.

    Article  CAS  Google Scholar 

  13. Yan, J., Estevez, M.C., Smith, J.E., et al., Nano Today, 2007, vol. 2, no. 3, p. 44.

    Article  Google Scholar 

  14. Stober, W., Fink, A., and Bohn, E., J. Colloid Interface Sci., 1968, vol. 26, p. 62.

    Article  Google Scholar 

  15. Boutonnet, M., Kizling, J., Stenius, P., and Maire, G., Colloids Surf., 1982, vol. 5, p. 209.

    Article  CAS  Google Scholar 

  16. Osseo-Asare, K. and Arriagada, F.J., Colloids Surf., 1990, vol. 50, p. 321.

    Article  CAS  Google Scholar 

  17. Arriagada, F.J. and Osseo-Asare, K., J. Colloid Interface Sci., 1995, vol. 170, p. 8.

    Article  CAS  Google Scholar 

  18. Arriagada, F.J. and Osseo-Asare, K., J. Colloid Interface Sci., 1999, vol. 211, p. 210.

    Article  CAS  Google Scholar 

  19. Van Blaaderen, A. and Vrij, A., Langmuir, 1992, vol. 8, p. 2921.

    Article  Google Scholar 

  20. Nyffenegger, R., Quellet, C., and Ricka, J., J. Colloid Interface Sci., 1993, vol. 159, p. 150.

    Article  CAS  Google Scholar 

  21. Burns, A., Sengupta, P., Zedayko, T., et al., Small, 2006, vol. 2, p. 723.

    Article  CAS  Google Scholar 

  22. Verhaegh, N.A.M. and Van Blaaderen, A., Langmuir, 1994, vol. 10, p. 1427.

    Article  CAS  Google Scholar 

  23. Ow, H., Larson, D.R., Srivastava, M., et al, Nano Lett., 2005, vol. 5, p. 113.

    Article  CAS  Google Scholar 

  24. Ganesh, A.B. and Radhakrishnan, T.K., Sens. Actuators B, 2007, vol. 123, p. 1107.

    Article  Google Scholar 

  25. Hashemi, P. and Abolghasemi, M.M., Sens. Actuators B, 2006, vol. 115, p. 49.

    Article  Google Scholar 

  26. Hashemi, P., Zarjani, R.A., Abolghasemi, M.M., and Olin, A., Sens. Actuators B, 2007, vol. 121, p. 396.

    Article  Google Scholar 

  27. Plaschke, M., Czolk, R., Reichert, J., and Ache, H.J., Thin Solid Films, 1996, vol. 279, p. 233.

    Article  CAS  Google Scholar 

  28. Zhao, X.J., Bagwe, R.P., and Tan, W.H., Adv. Mater. (Weinheim, Fed. Repub. Ger.), 2004, vol. 16, p. 173.

    Article  CAS  Google Scholar 

  29. Zhao, X.J., Tapec-Dytioco, R., and Tan, W.H., J. Am. Chem. Soc., 2003, vol. 125, p. 11474.

    Article  CAS  Google Scholar 

  30. Gulcev, M.D., Goring, G.G.L., Rakic, M., and Brennan, J.D., Anal. Chim. Acta, 2002, vol. 457, p. 47.

    Article  CAS  Google Scholar 

  31. Grant, S.A. and Glass, R.S., Sens. Actuators B, 1997, vol. 45, p. 35.

    Article  Google Scholar 

  32. Shchipunov, Y.A, in Bio-Inorganic Hybrid Nanomaterials: Strategies, Syntheses, Characterization and Applications, Ruiz-Hitzky, E., Ariga, K., and Lvov, Yu.M., Eds., Weinheim: Wiley-VCH, 2007, p. 75.

    Google Scholar 

  33. Gupta, R. and Chaudhury, N.K., Biosens. Bioelectron., 2007, vol. 22, p. 2387.

    Article  CAS  Google Scholar 

  34. Shchipunov, Y.A., J. Colloid Interface Sci., 2003, vol. 268, p. 68.

    Article  CAS  Google Scholar 

  35. Shchipunov, Y.A. and Karpenko, T.Y., Langmuir, 2004, vol. 20, p. 3882.

    Article  CAS  Google Scholar 

  36. Shchipunov, Y.A., Kojima, A., and Imae, T., J. Colloid Interface Sci., 2005, vol. 285, p. 374.

    Article  Google Scholar 

  37. Shchipunov, Yu.A., Krekoten, A.V., Kuryavyi, V.G., and Topchieva, I.N., Kolloidn. Zh., 2005, vol. 67, p. 380.

    CAS  Google Scholar 

  38. Shchipunov, Y.A., Karpenko, T.Y., and Krekoten, A.V., Compos. Interfaces, 2005, vol. 11, p. 587.

    Article  CAS  Google Scholar 

  39. Shchipunov, Yu.A., Krekoten, A.V., and Petukhova, M.V., Kolloidn. Zh., 2008, vol. 70, p. 802.

    CAS  Google Scholar 

  40. Tomihata, K. and Ikada, Y., J. Biomed. Mater. Res., 1997, vol. 37, p. 243.

    Article  CAS  Google Scholar 

  41. Shumilina, E.V. and Shchipunov, Yu.A., Kolloidn. Zh., 2002, vol. 64, p. 372.

    CAS  Google Scholar 

  42. Balderas-Hernandez, P., Ramirez-Silva, M.T., Romero-Romo, M., et al., Spectrochim. Acta, Part A, 2008, vol. 69, p. 1235.

    Article  Google Scholar 

  43. Kostov, Y., Tzonkov, S., Yotova, L., and Krysteva, M., Anal. Chim. Acta, 1993, vol. 280, p. 15.

    Article  CAS  Google Scholar 

  44. Jurmanovic, S., Kordic, S., Steinberg, M.D., and Steinberg, I.M., Thin Solid Films, 2010, vol. 518, p. 2234.

    Article  CAS  Google Scholar 

  45. Hashemi, P. and Zarjani, R.A., Sens. Actuators B, 2008, vol. 135, p. 112.

    Article  Google Scholar 

  46. Sabnis, R.W., in Handbook of Acid-Base Indicators, Boca Raton: CRC, 2008.

    Google Scholar 

  47. Goicoechea, J., Zamarreno, C.R., Matias, I.R., and Arregui, F.J., Sens. Actuators B, 2008, vol. 132, p. 305.

    Article  Google Scholar 

  48. Industrial Dyes: Chemistry, Properties, Applications, Hunger, K., Ed., Weinheim: Wiley-VCH, 2003.

    Google Scholar 

  49. Surre, F., Lyons, W.B., Sun, T., et al., J. Phys., Conf. Ser., 2009, vol. 178, p. 012046.

    Article  Google Scholar 

  50. Roberts, G.A.F., Chitin Chemistry, Basingstoke: MacMillan Education, 1992.

    Google Scholar 

  51. Shchipunov, Y.A. and Shipunova, N.Y., Colloids Surf. B, 2008, vol. 63, p. 7.

    Article  CAS  Google Scholar 

  52. Shchipunov, Y.A., Burtseva, Y.V., Karpenko, T.Y., et al., J. Biochem. Biophys. Methods, 2004, vol. 38, p. 25.

    Article  Google Scholar 

  53. Shchipunov, Y.A., Burtseva, Y.V., Karpenko, T.Y., et al., J. Mol. Catal. B, 2006, vol. 40, p. 16.

    Article  CAS  Google Scholar 

  54. Brinker, C.J. and Scherer, G.W., Sol-Gel Science. The Physics and Chemistry of Sol-Gel Processing, Boston: Academic, 1990.

    Google Scholar 

  55. Rottman, C., Turniansky, A., and Avnir, D., J. Sol-Gel Sci. Technol., 1999, vol. 13, p. 17.

    Article  Google Scholar 

  56. Tsai, H.C. and Doong, R.A., Abstracts of Papers, 3 IAWQ Specialized Conf. on Hazard Assessment and Control of Environmental Contaminants, Shiga, 1999, p. 283.

  57. Garcia-Heras, M., Kromka, K., Faber, J., et al., Environ. Sci. Technol., 2005, vol. 39, p. 3743.

    Article  CAS  Google Scholar 

  58. Jeronimo, P.C.A., Araujo, A.N., Montenegro, M.C., et al., Anal. Chim. Acta, 2004, vol. 504, p. 235.

    Article  CAS  Google Scholar 

  59. Yang, L. and Saavedra, S.S., Anal. Chem., 1995, vol. 67, p. 1307.

    Article  CAS  Google Scholar 

  60. Belhadj, M.O., Grosso, D., Sanchez, C., and Livage, J., J. Phys. Chem. Solids, 2004, vol. 65, p. 1751.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © Yu.A. Shchipunov, O.N. Khlebnikov, 2011, published in Kolloidnyi Zhurnal, 2011, Vol. 73, No. 3, pp. 415–426.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shchipunov, Y.A., Khlebnikov, O.N. Nanocomposite material with immobilized acid-base dyes conjugated with polysaccharides. Colloid J 73, 418–429 (2011). https://doi.org/10.1134/S1061933X11030136

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X11030136

Keywords

Navigation