Skip to main content
Log in

The role of interdroplet interaction in the physics of highly concentrated emulsions

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

The osmotic pressure and shear modulus of highly concentrated emulsions were modelled by considering both interfacial energy and interdroplet interaction. This was performed for two- and three-dimensional cases and by optimization and approximation methods of predicting film thickness. The results show that even a small source of interaction can result in non-superimposition of scaled osmotic pressure and shear modulus by Laplace pressure for different droplet sizes, and also significant deviation from the models which consider interfacial interaction as the sole source of energy. The model was used to explain the reciprocal squared diameter dependency of elastic modulus: an interaction similar to the van der Waals type can be responsible for this observation. The model can also be used to analyze the interdroplet interactions in highly concentrated emulsions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Becher, P., Emulsions: Theory and Practice, New York: Reinhold, 1965.

    Google Scholar 

  2. Sebba, F., Foams and Biliquid Foams-Aphrons, Chichester: Wiley, 1987.

    Google Scholar 

  3. Princen, H.M., J. Colloid Interface Sci., 1979, vol. 71, p. 55.

    Article  Google Scholar 

  4. Princen, H.M., Langmuir, 1986, vol. 2, p. 519.

    Article  CAS  Google Scholar 

  5. Princen, H.M. and Kiss, A.D., J. Colloid Interface Sci., 1986, vol. 112, p. 427.

    Article  CAS  Google Scholar 

  6. Princen, H.M., J. Colloid Interface Sci., 1985, vol. 105, p. 150.

    Article  CAS  Google Scholar 

  7. Princen, H.M. and Kiss, A.D., Langmuir, 1987, vol. 3, p. 36.

    Article  CAS  Google Scholar 

  8. Princen, H.M., J. Colloid Interface Sci., 1983, vol. 91, p. 160.

    Article  CAS  Google Scholar 

  9. Morse, D.C. and Witten, T.A., Europhys. Lett., 1993, vol. 22, p. 549.

    Article  CAS  Google Scholar 

  10. Buzza, D.M.A. and Cates, M.E., Langmuir, 1994, vol. 10, p. 4503.

    Article  CAS  Google Scholar 

  11. Buzza, D.M.A., Lu, C.-Y.D., and Cates, M.E., J. Phys. France II, 1995, vol. 5, p. 37.

    Article  CAS  Google Scholar 

  12. Lacasse, M.-D., Grest, G.S., and Levine, D., Phys. Rev. E., 1996, vol. 54, p. 5436.

    Article  CAS  Google Scholar 

  13. Lacasse, M.-D., Grest, G.S., Levine, D., Mason, T.G., and Weitz, D.A., Phys. Rev. Lett., 1996, vol. 76, p. 3448.

    Article  CAS  Google Scholar 

  14. Malkin, A.Ya., Masalova, I., Slatter, P., and Wilson, K., Rheol Acta, 2004, vol. 43, p. 584.

    Article  CAS  Google Scholar 

  15. Babak, V.G., Langenfeld, A., Fa, N., and Stébé, M.J., Prog. Colloid Polym. Sci., 2001, vol. 118, p. 216.

    Article  CAS  Google Scholar 

  16. Masalova, I., Taylor, M., Kharatiyan, E., and Malkin, A.Ya., J. Rheol., 2005, vol. 49, p. 839.

    Article  CAS  Google Scholar 

  17. Pons, R., Solans, C, Stébé, M.J., Erra, P., and Ravey, J.C., Prog. Colloid Polym. Sci., 1992, vol. 89, p. 110.

    Article  CAS  Google Scholar 

  18. Pons, R., Solans, C., and Tadros, Th.F., Langmuir, 1995, vol. 11, p. 1966.

    Article  CAS  Google Scholar 

  19. Otsubo, Y. and Prud’homme, R.K., RheoL Acta, 1994, vol. 33, p. 29.

    Article  CAS  Google Scholar 

  20. Tadros, Th.F., Colloids Surf. A, 1994, vol. 91, p. 38.

    Article  Google Scholar 

  21. Portal, P., Guerrero, A., Berjano, M., and Gallegos, C., J. Am. Oil Chem. Soc., 1997, vol. 74, p. 1203.

    Article  Google Scholar 

  22. Aronson, P.M. and Petko, M.F., J. Colloid Interface Sci., 1993, vol. 159, p. 134.

    Article  CAS  Google Scholar 

  23. Bower, Gallegos, C., Mackley, M.R., and Madiedo, J.M., Rheol. Acta, 1999, vol.38, p. 145.

    Article  CAS  Google Scholar 

  24. Langenfeld, A., Schmitt, V., and Stébé, M.J., J. Colloid Interface Sci., 1999, vol. 218, p. 522.

    Article  CAS  Google Scholar 

  25. Langenfeld, A. and Stébé, M.J., Phys. Chem. Chem. Phys., 2002, vol. 4, p. 322.

    Article  CAS  Google Scholar 

  26. Floury, J., Desrumaux, A., and Lardiéres, J., Innovative Food Sci. Emerging Technol., 2000, vol. 1, p. 127.

    Article  CAS  Google Scholar 

  27. Dimitrova, T.D. and Leal-Carderon, F., Langmuir, 2001, vol. 17, p. 3235.

    Article  CAS  Google Scholar 

  28. Dimitrova, T.D. and Leal-Calderon, F., Adv. Colloid Interface Sci., 2004, vol. 108–109, p. 49.

    Article  Google Scholar 

  29. Bengoechea, C., Cordobés, F., and Guerrero, A., Rheol. Acta, 2006, vol. 46, p. 13.

    Article  Google Scholar 

  30. Mason, T.G., Bibette, J., and Weitz, D.A., Phys. Rev. Lett., 1995, vol. 75, p. 2051.

    Article  CAS  Google Scholar 

  31. Romero, A., Cordobés, F., Puppo, M.C., Guerrero, A., and Bengoechea, C., Food Hydrocolloids, 2008, vol. 22, p. 1033.

    Article  CAS  Google Scholar 

  32. Mougel, J., Alvarez, O., Baravian, C., Caton, F., Marchal, P., and Stébé, M.J., RheoL Acta, 2006, vol. 45, p. 555.

    Article  CAS  Google Scholar 

  33. Masalova, I. and Malkin, A.Ya., Appl. Rheol., 2007, vol. 17, p. 42250.

    Google Scholar 

  34. Alvarez-Solano, O.A., Emulsions inverses très concentrées. Influence du procédé et de la formulation sur leurs proprietes rhéologliques, Doctoral thesis, Institut National Polytechnique de Lorraine, Nancy, France, 2006.

    Google Scholar 

  35. Landau, L.D. and Lifshitz, E.M., Theory of elasticity, Oxford: Pergamon Press, 1986.

    Google Scholar 

  36. Bergeron, V., J. Phys.: Condens. Matter, 1999, vol. 11, p. R215.

    Article  CAS  Google Scholar 

  37. Israelachvili, J.N., Intermolecular and Surface Forces, London: Academic Press, 1992.

    Google Scholar 

  38. Kralchevsky, P.A., Danov, K.D., and Denkov, N.D., Chapter 5 in Handbook of Colloid and Surface Chemistry, 2nd Edition, Birdi, K.S., Ed., Boca Raton: CRC Press, 2003.

    Google Scholar 

  39. De Gennes, P.G., Adv. Colloid Interface Sci., 1987, vol. 27, p. 189.

    Article  Google Scholar 

  40. Danov, K.D., Petsev, D.N., Denkov, N.D., and Borwankar, R., J. Chem. Phys., 1993, vol. 99, p. 7179.

    Article  CAS  Google Scholar 

  41. Denkov, N.D., Petsev, D.N., and Danov, K.D., Phys. Rev. Lett., 1993, vol. 71, p. 3226.

    Article  CAS  Google Scholar 

  42. Petsev, D.N. and Linse, P., Phys. Rev. E, 1997, vol. 55, p. 586.

    Article  CAS  Google Scholar 

  43. Petsev, D.N. and Bibette, J., Langmuir, 1995, vol. 11, p. 1075.

    Article  CAS  Google Scholar 

  44. Denkov, N.D., Petsev, D.N., and Danov, K.D., J. Colloid Interface Sci., 1995, vol. 176, p. 189; Petsev, D.N., Denkov, N.D., and Kralchevsky, P.A., J. Colloid Interface Sci., 1995, vol. 176, p. 201.

    Article  CAS  Google Scholar 

  45. Derjaguin, B.V., Theory of Stability of Colloids and Thin Liquid Films, New York: Plenum Press, Consultants Bureau, 1989.

    Google Scholar 

  46. Brakke, K., Exp. Math., 1992, vol. 1, p. 141.

    Google Scholar 

  47. Treloar, L.R.G., Rep. Prog. Phys., 1973, vol. 36, p. 755.

    Article  CAS  Google Scholar 

  48. Malkin, A.Ya. and Masalova, I., Rheology of super-concentrated emulsions, in Advances in rheology and its applications, Luo, Y., Rao, Q., and Xu Y., Eds., New York: Sci. Press, 2005, p. 5.

    Google Scholar 

  49. Malkin, A.Ya. and Masalova, I., J. Non-Newton. Fluid Mech., 2007, vol. 147, p. 65.

    Article  CAS  Google Scholar 

  50. Masalova, I., Malkin, A.Ya., Ferg, E., Kharatiyan, E., and Haldenwang, R., J. Rheol., 2006, vol. 50, p. 435.

    Article  CAS  Google Scholar 

  51. Bengtsson, L.A., Frostemark, F., and Holmberg, B., J. Chem. Soc. Faraday Trans., 1994, vol. 90, p. 559.

    Article  CAS  Google Scholar 

  52. Reynolds, P.A., Gilbert, E.P., and White, J.W., J. Phys. Chem. B, 2000, vol. 104, p. 7012.

    Article  CAS  Google Scholar 

  53. Reynolds, P.A., Gilbert, E.P., and White, J.W., J. Phys. Chem. B, 2001, vol. 105, p. 6925.

    Article  CAS  Google Scholar 

  54. Dolan, A.K., Edwards, S.F., Proc. R. Soc. London, 1975, vol. A343, p. 627.

    Google Scholar 

  55. Ganguly, S., Krishna Mohan, V., Bhasu, V.C.J., Mathews, E., Adiseshaiah, K.S., and Kumar, A.S., Colloids Surf., 1992, vol. 65, p. 243.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Masalova.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foudazi, R., Masalova, I. & Malkin, A.Y. The role of interdroplet interaction in the physics of highly concentrated emulsions. Colloid J 72, 74–92 (2010). https://doi.org/10.1134/S1061933X10010102

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X10010102

Keywords

Navigation