Skip to main content
Log in

Thermal Nondestructive Testing: Development of Conventional Directions and New Trends (A Review)

  • THERMAL METHODS
  • Published:
Russian Journal of Nondestructive Testing Aims and scope Submit manuscript

Abstract

In recent years, thermal testing has been a rapidly developing field of nondestructive testing due to the development of composite materials, testing of which by conventional methods is difficult. Undoubted progress has been made in the development and commercialization of thermal imagers that form the basis of thermal flaw detectors. Starting from earlier reviews, the author tried to summarize the achievements of recent years both in the methodology of testing and processing of temperature information and in the development of modern thermal flaw detectors and their fields of application. The review includes domestic achievements in the field of thermal testing and numerous foreign studies, thanks to which thermal testing is considered as one of the main methods for nondestructive testing of certain classes of materials and structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 6.

REFERENCES

  1. Fourier, J., Théory du mouvement de la chaleur dans les corps solides, 1er partie, Mém. l’Acad. Sci., 1824, vol. 4, pp. 185–555; 1826, vol. 5, pp. 153–246.

  2. Ångstrom, M.A.J., New method of determining the thermal conductivity of bodies, Philos. Mag., 1863, no. 25, pp. 130–142.

  3. Hudson, R.D., Infrared System Engineering, Hoboken: Wiley-Interscience, 1969.

    Google Scholar 

  4. Lloyde, J.M., Thermal Imaging Systems, New York: Plenum, 1979.

    Google Scholar 

  5. The Infrared and Electro-Optical Systems Handbook, Accetta, J.S. and Shumaker, D.L., Eds., vols. 1–8, Bellingham: SPIE Opt. Eng. Press, 1993.

    Google Scholar 

  6. Vollmer, M. and Möllmann, K.-P., Infrared Thermal Imaging: Fundamentals, Research and Applications, Weinheim: Wiley-VCH, 2010.

    Book  Google Scholar 

  7. Minkina, W. and Dudzik, S., Infrared Thermography: Errors and Uncertainties, Hoboken: Wiley, 2009.

    Book  Google Scholar 

  8. Infrared and Thermal Testing, in: Nondestructive Testing Handbook, Columbus: ASNT, 2001, vol. 3.

    Google Scholar 

  9. Infrared Methodology and Technology, in: Nondestructive Testing Monographs and Tracts, Philadelphia: Gordon and Breach Sci. Publ., 1994, vol. 7.

    Google Scholar 

  10. Maldague, X., Nondestructive Evaluation of Materials by Infrared Thermography, Berlin: Springer-Verlag, 1993.

    Book  Google Scholar 

  11. Almond, D. and Patel, P., Photothermal Science and Techniques, London: Chapman and Hall, 1996.

    Google Scholar 

  12. Maldague, X., Theory and Practice of Infrared Technology for Nondestructive Testing, New York: Wiley , 2001.

    Google Scholar 

  13. Daniels, A., Field Guide to Infrared Systems, Washington: SPIE, 2006.

    Book  Google Scholar 

  14. Kaplan, H., Practical Applications of Infrared Thermal Sensing and Imaging Equipment. Tutorial Texts in Optical Engineering, Bellingham: SPIE, vol. TT34, 1999.

    Google Scholar 

  15. Breitenstein, O., Warta, W., and Langekamp, M., Lock-In Thermography, Berlin: Springer, 2010, vol. 10.

    Book  Google Scholar 

  16. Vavilov, V.P., Infrakrasnaya termographiya i teplovoi kontrol’ (Infrared Thermography and Thermal Testing), Moscow: Spektr, 2015.

  17. Budadin, O.N., Vavilov, V.P., and Abramova, E.V., Teplovoi kontrol’ (Thermal Testing), Moscow: Spektr, 2011.

  18. Budadin, O.N., Potapov, A.I., Kolganov, V.I., Troitsky-Markov, T.E., and Abramova, E.V., Teplovoi nerazrushayushchii kontrol’ izdelii (Thermal Nondestructive Testing of Products), Moscow: Nauka, 2002.

  19. Vavilov, V. and Burleigh, D., Infrared Thermography and Thermal Nondestructive Testing, Berlin: Springer Nature, 2019.

    Google Scholar 

  20. Chernisheva, T.I. and Chernishev, V.N., Metodi i sredstva nerazrushayuschego kontrolya teplofizicheskikh svoistv materialov (Methods and Means of Nondestructive Testing of Thermophysical Properties of Materials), Moscow: Mashinostroenie, 2001.

  21. Cramer, E., Winfree, W., Hodges, K.L., and Koshti, A., Status of thermal NDT of space shuttle materials at NASA, Proc. SPIE, 2006, vol. 6205. https://doi.org/10.1117/12.669684

  22. Vavilov, V.P. and Burleigh, D.D., Review of pulsed thermal NDT: Physical principles, theory and data processing, NDT & E Int., 2015, vol. 73, pp. 28–52.

    Article  Google Scholar 

  23. Maldague, X.P. and Zolotoyabko, E., Theory and Practice of Infrared Vision, New York: Wiley, 2016, 2nd ed.

    Google Scholar 

  24. Siegel, J., Beemer, M.F., and Shepard, S., Automated nondestructive inspection of fused filament fabrication components using Thermographic Signal Reconstruction, Addit. Manuf., 2019, vol. 31, p. 100923. https://doi.org/10.1016/j.addma.2019.100923

    Article  CAS  Google Scholar 

  25. Chulkov, A.O., Nesteruk, D.A., Shagdirov, B.I., and Vavilov, V.P., Method and equipment for infrared and ultrasonic thermographic testing of large-sized complex-shaped composite products, Russ. J. Nondestr. Test., 2021, no. 7, pp. 619–626. https://doi.org/10.31857/S0130308221070083

  26. Obeidat, O., Qiuye Yu, Favro, L., and Xioyan Han, The Effect of heating duration on the quantitative estimation of defect depth using sonic infrared imaging, J. Nondestr. Eval. Diagn. Prognostics Eng. Syst., 2021, vol. 4, no. 4, pp. 1–7. https://doi.org/10.1115/1.4050353

    Article  Google Scholar 

  27. Xiaoyan Han, Jianping Liu, and Islam Md.S., Sonic infrared imaging NDE, SPIE Smart Struct. Mater. Nondestr. Eval. Health Monit., San Diego, 2005, vol. 5765, pp. 142–147. https://doi.org/10.1117/12.600118

  28. Holland, S. and Schiefelbein, B., Model-based inversion for pulse thermography, Exp. Mech., 2019, vol. 59, no. 4, pp. 413–426. https://doi.org/10.1007/s11340-018-00463-2

    Article  Google Scholar 

  29. Holland, S.D., First measurements from a new broadband vibrothermography measurement system, Rev. Quant. Nondestr. Eval., 2007, vol. 26, pp. 478–483.

    Article  Google Scholar 

  30. Zalameda, J.N. and Winfree, W., Passive thermography measurement of damage depth during composites load testing, Frontiers Mech. Eng., 2021, vol. 7, p. 651149. https://doi.org/10.3389/fmech.2021.651149

    Article  Google Scholar 

  31. Cramer, E.K. and Winfree, W., The application of principal component analysis using fixed eigenvectors to the Infrared thermographic inspection of the space shuttle thermal protection system, Proc. Quant. InfraRed Thermogr. Conf. (Hampton, 2006). https://doi.org/10.21611/qirt.2006.002

  32. Sun, J.G., Quantitative thermal tomography imaging of complex material structures, AIP Conf. Proc., 2012, vol. 1430, p. 507. https://doi.org/10.1063/1.4716269

    Article  Google Scholar 

  33. Roche, J.-M. and Balageas, D.L., Common tools for quantitative time-resolved pulsed and step-heating thermography. Part 1: Theoretical basis, Quant. Infrared Thermogr. J., 2014, vol. 11, pp. 43–56.

    Article  Google Scholar 

  34. Rajic, N., Principal component thermography for flaw contrast enhancement and flaw depth characterization in composite structures, Compos. Struct., 2002, vol. 58, no. 4, pp. 521–528. https://doi.org/10.1016/S0263-8223(02)00161-7

    Article  Google Scholar 

  35. Almond, D.P., Angioni, S., and Pickering, S.D., A case for NDT expert systems based on the development of the Thermographic NDE Advisory and Guidance System, Insight, Nondestr. Test. Cond. Monit., 2017, vol. 59, no. 9, pp. 473–478. https://doi.org/10.1784/insi.2017.59.9.473

    Article  CAS  Google Scholar 

  36. Metz, C., Franz, P., Fischer, C., Wachtendorf, V., and Maierhofer, C., Active thermography for quality assurance of 3D-printed polymer structures, 14th Int. Conf. Quant. Infrared Thermogr. (Berlin, 2018), NDT.net, no. 2019-05. https://doi.org/10.3390/app12125851

  37. Tuschl, C., Oswald-Tranta, B., and Eck, S., Scanning inductive thermographic surface defect inspection of long flat or curved work-pieces using rectification targets, Appl. Sci., 2022, vol. 12, no. 12, p. 5851.

    Article  CAS  Google Scholar 

  38. Mayr, G., Plank, B., Gruber, J., Sekelja, J., and Hendorfer, G., Quantitative evaluation of the effective thermal diffusivity for model-based porosity prediction in CFRP, Quant. Infrared Thermogr. J., 2016, vol. 13, no. 1, pp. 70–82. https://doi.org/10.1080/17686733.2015.1093310

    Article  Google Scholar 

  39. Netzelmann, U., Walle, G., Lugin, S., Ehlen, A., Bessert, S., and Valeske, B., Induction thermography: Principle, applications and first steps toward standardization, Quant. Infrared Thermogr. J., 2016, vol. 13, no. 2, pp. 170–81. https://doi.org/10.1080/17686.733.2016.1145842

    Article  Google Scholar 

  40. Ryu, M., Batsale, J.-C., and Morikawa, J., Modelling of dual lock-in method for the simultaneous measurements of thermal diffusivity and thermal effusivity, Intern. J. Heat Mass Transfer., 2020, vol. 162, p. 120337. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120337

    Article  CAS  Google Scholar 

  41. Alhammad, M., Avdelidis, N.P., Ibarra-Castanedo, C., Torbali, M.E., Genest, M., Zhang, H., Zolotas, A., and Maldgue, X.P., Automated impact damage detection technique for composites based on thermographic image processing and machine learning classification, Sensors, 2022, vol. 22 (23), p. 9031.

    Article  CAS  Google Scholar 

  42. Nowakowski, A. and Kaczmarek, M., Active dynamic thermography in medical diagnostics, in Application of Infrared to Biomedical Sciences, Ng, E.Y. and Etehad Tavakol, M., Eds., Singapore: Springer Nature, 2017, pp. 291–310. https://doi.org/10.1007/978-981-10-3147-2_17

  43. Gryś, S. and Minkina, W., Noninvasive methods of active thermographic investigation: Short overview of theoretical foundations with an example of application, Energies, 2022, vol. 15, p. 4865. https://doi.org/10.3390/en15134865

    Article  Google Scholar 

  44. Świderski, W., IR Thermography nondestructive testing methods of composite materials used in aerospace applications, Proc. Quant. InfraRed Thermogr. Asia Conf. (Mahabalipuram, 2015). https://doi.org/10.21611/qirt.2015.0016

  45. Gliścińska, E., Michalak, M., Krucińska, I., Strakowska, M., Kopeć, M., and Więcek, B., A new thermographic method for determining the thickness of the polymer surface layer in sound-absorbing fibrous composite materials, Polymer Test., 2022, vol. 115, no. 2, p. 107748.

    Article  Google Scholar 

  46. Steenackers, G., Peeters, J., and Janssens, K., Sublayer composition evaluation of Artwork using active thermography, Proc. 14 Int. Conf. Quant. Infrared Thermogr. (Berlin, 2018).

  47. Chulkov, A.O., Nesteruk, D.A., Vavilov, V.P., Moskovchenko, A.I., Saeed, N., and Omar, M., Optimizing input data for training an artificial neural network used for evaluating defect depth in infrared thermographic nondestructive testing, Infrared Phys. & Techol., 2019, vol. 102, p. 103047. https://doi.org/10.1016/j.infrared.2019.103047

    Article  Google Scholar 

  48. Venegas, P., Peran, J., Usamentiaga, R., and De Ocáriz, I.S., NDT inspection of aeronautical components by projected thermal diffusivity analysis, Proc. 14th Int. Conf. Quant. Infrared Thermogr. (Berlin, 2018), NDT.net, no. 2019-05.

  49. Cernuschi, F. and Bison, P., Thirty years of thermal barrier coatings (TBC). Photothermal and thermographic Techniques: Best practices and lessons learned, J. Thermal Spray Technol., 2022, vol. 31, no. 3, pp. 716–744.https://doi.org/10.1007/s11666-022-01344-w

  50. Meola, C., Carlomagno, G.M., Squillace, A., and Vitiello, A., Non-destructive evaluation of aerospace materials with lock-in thermography, Meas. Sci. Technol., 2006, vol. 13, no. 3, pp. 380–389. https://doi.org/10.1016/j.engfailanal.2005.02.007

    Article  CAS  Google Scholar 

  51. D’Accardi, E., Palumbo, D., Tamborrino, R., Cavallo, P., and Galietti, U., Pulsed thermography: evaluation and quantitative analysis of defects through different post-processing algorithms, Proc. 14th Int. Conf. Quant. Infrared Thermogr. (Berlin, 2018), NDT.net, no. 2019-05.

  52. Švantner, M., Muzika, L., Moskovchenko, A., and Pereira, C.M.C., Repeatability study of flash-pulse thermographic inspection of carbon-fiber composite samples, Infrared Phys. & Technol., 2022, vol. 126, p. 104350. https://doi.org/10.1016/j.infrared.2022.104350

    Article  CAS  Google Scholar 

  53. Mulaveesala, R. and Tuli, S., Theory of frequency modulated thermal wave imaging for nondestructive subsurface defect detection, Appl. Phys. Lett., 2006, vol. 89 (19), article no. 191913.

    Article  Google Scholar 

  54. Park, H.-S. and Choe, M.-Y., Research trends in infrared thermography NDT—Ultrasound infrared thermography technology, J. Korean Soc. Nondestr. Test., 2012, vol. 32, no. 3, pp. 307–313. https://doi.org/10.7779/JKSNT.2012.32.3.307

    Article  Google Scholar 

  55. Uchida, Y., Shiozawa, D., Hori, M., Kobayashi, K., and Sakagami, T., Advanced technique for thermoelastic stress analysis and dissipation eEnergy evaluation via visible-infrared synchronous measurement, Exp. Mech., 2022, vol. 62, no. 3, pp. 459–470.

    Article  CAS  Google Scholar 

  56. Runshi Zhang, Xingwang Guo, and Mingyuan He, Intelligent pseudo solder detection in PCB using laserpulsed thermography and neural network, IEEE Sensors J., 2021, vol. 22, no. 1, pp. 631–638. https://doi.org/10.1109/JSEN.2021.3129064

    Article  Google Scholar 

  57. Jue Hu, Hai Zhang, Sfarra, S., Gargiulo, G., Avdelidis, N.P., Mingli Zhang, Yang, D., and Maldague, X., Nondestructive imaging of marqueteries based on a new infrared-terahertz fusion technique, Infrared Phys. & Technol., 2022, vol. 125, no. 9, p. 104277. https://doi.org/10.1016/j.infrared.2022.104277

    Article  Google Scholar 

  58. Fernandes, H.C., Herrman, H.-G., Hai Zhang, Goyo, F., Nativio Del Pra, J.H., and Tarpani, J.R., Infrared thermography for impact damage analyses on curved CFRP laminates used in geostationary satellites, Proc. 5th Braz. Conf. Compos. Mater.—BCCM 5 (Sao Carlos, 2021).

  59. Panella, F.W. and Pirinu, A., Application of pulsed thermography and post-processing techniques for CFRP industrial components, J. Nondestr. Eval., 2021, vol. 40, p. 52. https://doi.org/10.1007/s10921-021-00776-8

    Article  Google Scholar 

  60. Budadin, O.N., Kulkov, A.A., and Kozelskaya, S.O., RF Patent no. RU 2616438 C1, 2017.

  61. RD-13-04-2006. Methodological recommendations on the procedure for conducting thermal control of technical devices and structures used and operated at hazardous production facilities, Ser. 28, Iss. 11, Pulikovskii, K.B., Ed., Moscow: OAO Nauchno-Tekh. Tsentr Bezop. Prom-sti, 2007.

  62. Chernishev, V.N., Odnolko, V.G., and Chernishev, A.V., Metody i sistemy nerazrushayuschego kontrolya teplozashchitnykh svoistv stroitel’nykh materialov i izdelii (Methods and Systems of Nondestructive Testing of Heat-Protective Properties of Building Materials and Products), Moscow: Spektr, 2012.

  63. Ponomarev, D.B., Zakharenko, V.A., and Abramova, E.V., Analysis of errors in pyrometric measurements in production conditions, Omskii Nauchn. Vest., 2019, no. 5, pp. 94–99. https://doi.org/10.25206/1813-8225-2019-167-94-99

  64. Kotovshchikov, I.O., Development of methods of active thermal control of helicopter blades made of composite materials, Cand. Sci. (Eng.) Dissertation, St. Petersburg: ITMO, 2022.

  65. Roemer, J., Pieczonka, L., and Uhl, T., Laser spot thermography of welded joints, Diagnostyka, 2014, vol. 15, no. 2, pp. 43–49.

    Google Scholar 

  66. Mashkov, P., Pencheva, T., and Gyoch, B.S., Reflow soldering processes development using infrared thermography, Proc. 32nd Int. Spring Semin. Electron. Technol. (Brno, 2009). https://doi.org/10.1109/ISSE.2009.5207020

  67. Storozhenko, V.A., Research of the method and development of means of active thermal control of nonmetallic materials, Extended Abstract of Cand. Sci. (Eng.) Dissertation, Vinnitsa: Polytech. Univ., 1979.

  68. Chulkov, A.O., Tuschl, C., Nesteruk, D.A., Oswald-Tranta, B., Vavilov, V.P., and Kuimova, M.V., The detection and characterization of defects in metal/nonmetal sandwich structures by thermal NDT, and the combination of areal heating and scanned linear heating by optical and inductive methods, J. Nondestr. Eval., 2021, vol. 40, article no. 44. https://doi.org/10.1007/s10921-021-00772-y

    Article  Google Scholar 

  69. Thomson, W. (Lord Kelvin), On the dynamical theory of heat, Trans. R. Soc. Edinburgh, 1853, vol. 20, pp. 261–283.

    Article  Google Scholar 

  70. Mignogna, R.B., Green, R.E., Duke, J., Henneke, E.G., and Reifsnider, K.L., Thermographic investigations of high-power ultrasonic heating in materials, Ultrasonics, 1981, vol. 19, no. 4, pp. 159–163.

    Article  Google Scholar 

  71. Henneke, E.G. II and Russell, S.S., Vibrothermography, in: Nondestructive Testing Handbook, 2nd ed. Special Nondestructive Testing Methods, Columbus: Am. Soc. Nondestr. Test., 1994, vol. 9, pp. 336–340.

  72. Xiaoyan Han, Jianping Liu, and Islam, Md. S., Sonic infrared imaging NDE, Smart Struct. Mater. 2005: Sens. Smart Struct. Technol. Civ. Mech. Aerosp. Syst., 2005, vol. 5765, pp. 142–147. https://doi.org/10.1117/12.600118

    Article  Google Scholar 

  73. Vavilov, V. and Nesteruk, D., Comparative analysis of optical and ultrasonic stimulation of flaws in composite materials, Russ. J. Nondestr. Test., 2010, vol. 46, no. 2, pp. 147–152.

    Article  Google Scholar 

  74. Kremer, K.-J., A new technique for online testing of steel products for surface defects, Proc. 3rd Eur. Conf. Nondestr. Test. (Florence, 1984), pp. 171–186.

  75. Lehtiniemi, R. and Hartikainen, J., An application of induction heating for fast thermal nondestructive evaluation, Rev. Sci. Instrum., 1994, vol. 65, pp. 2099–2101.

    Article  Google Scholar 

  76. Starman, S. and Matz, V., Automated system for crack detection using infrared thermographic testing, Proc. 4th Int. CANDU In-Service Inspection Workshop NDT Conf. (Toronto, 2012). https://www.ndt.net/article/ndt-canada2012/content/papers/19_Starman.pdf.

  77. Chulkov, A.O., Tuschl, C., Nesteruk, D.A., Oswald-Tranta, B., Vavilov, V.P., and Kuimova, M.V., The detection and characterization of defects in metal/nonmetal sandwich structures by thermal NDT, and a comparison of areal heating and scanned linear heating by optical and inductive methods, J. Nondestr. Eval., 2021, vol. 40 (44). https://doi.org/10.1007/s10921-021-00772-y

  78. Vavilov, V.P., Noise-limited thermal/infrared nondestructive testing, NDT & E Int., 2014, vol. 61, pp. 16–23.

    Article  Google Scholar 

  79. Degiovanni, A., Lamine, A.-S., Houlbert, A.-S., and Maillet, D., Identification of subsurface defects using a sensibility analysis, Proc. 4th Eur. Conf. Compos. Mater. (Stuttgart, 1990), pp. 691–695.

  80. Krapez, J.-C. and Balageas, D.L., Early detection of thermal contrast in pulsed stimulated infrared thermography, Proc. Quant. Infrared Thermogr. QIRT-94, Eurotherm. Semin. no. 42 (Sorrento, 1994), pp. 260–266.

  81. Maldague, X. and Marinetti, S., Pulse phase infrared thermography, J. Appl. Phys., 1996, vol. 79, pp. 2694–2698.

    Article  CAS  Google Scholar 

  82. Galmiche, F., Vallerand, S., and Maldague, X., Wavelet transform applied to pulsed phase thermography, Proc. V-th Workshop Adv. Infrared Technol. Appl. (Venice, 1999), pp. 117–122.

  83. Ibarra-Castanedo, C., Gonzalez, D., Galmishe, F., Maldague, X.P., and Bendada, A., Discrete signal transforms as a tool for processing and analyzing pulsed thermographic data, Proc. SPIE “Thermosense-XXVIII,” 2006, vol. 6205, p. 620514.

  84. Gonzales, D., Ibarra-Castanedo, C., Madruga, F., and Maldague, X.P., Analysis of pulsed thermographic sequences based on Radon transform, Proc. SPIE “Thermosense-XXVIII,” 2006, vol. 6205, p. 62051N.

  85. Grinzato, E., Bison, P.G., Marinetti, S., and Vavilov, V., Non-destructive evaluation of delaminations in fresco plaster using transient infrared thermography, Res. Nondestr. Eval., New York: Springer, 1994, vol. 5, no. 4, pp. 257–271.

  86. Shepard, S., US Patent no. 6516084, 2003.

  87. Yanjie Wei, Yimin Ye, Hongjun He, and Zhilong Su, Multi-frequency fused lock-in thermography in detecting defects at different depths, J. Nondestr. Eval., 2022, vol. 41, no. 3, p. 60. https://doi.org/10.1007/s10921-022-00889-8

  88. Kaur, K. and Mulaveesala, M., An efficient data processing approach for frequency modulated thermal wave imaging for inspection of steel material, Infrared Phys. & Technol., 2019, vol. 103, p. 103083. https://doi.org/10.1016/j.infrared.2019.103083

    Article  CAS  Google Scholar 

  89. Vavilov, V.P., Shirayev, V.V., and Kuimova, M.V., Time- and phase-domain thermal tomography of composites, Photonics, 2018, vol. 5, no. 4, p. 31. https://doi.org/10.3390/photonics5040031

    Article  CAS  Google Scholar 

  90. Toivanen, J.M., Tarvainen, T., Huttunen, J.M.J., Savolainen, T., Orlande, H.R.B., Kaipio, J.P., and Kolehmaine, V., 3D thermal tomography with experimental measurement data, Int. J. Heat & Mass Transfer, 2014, vol. 78, pp. 1126–1134.

    Article  Google Scholar 

  91. Ringermacher, H.I., Howard, D.R., and Knight, B., Thermal imaging NDT at General Electric, 18th WCNDT (Durban, 2012).

  92. Hongjin Wang and Sheng-Jen Hsieh, Solving the inverse heat conduction problem in using long square pulse thermography to estimate coating thickness by using SVR models based on restored pseudo heat flux (RPHF) in plane profile, J. Nondestr. Eval., 2018, vol. 37, p. 78. https://doi.org/10.1007/s10921-018-0535-8

  93. Sakagami, T., Izumi, Y., Mori, N., and Kubo, S., Development of self-reference lock-in thermography and its application to remote nondestructive inspection of fatigue cracks in steel bridges, Quant. Infrared Thermogr. J., 2010, vol. 7, no. 1, pp. 73–84.

    Article  Google Scholar 

  94. Ciliberto, A., Cavaccini, G., Salvetti, O., et al., Porosity detection in composite aeronautical structures, Infrared Phys. & Technol., 2002, vol. 43, pp. 139–143.

    Article  Google Scholar 

  95. Shark, L.K., Matuszewski, B.J., Smith, J.P., and Varley, M.R., Automatic feature-based fusion of ultrasonic, radiographic and shearographic images for aerospace NDT, Insight, 2001, vol. 43, no. 9, pp. 607–615.

    Google Scholar 

  96. Balageas, D., Maldague, X., Burleigh, D., Vavilov, V.P., Oswald-Tranta, B., Roche, J.-M., Pradere, C., and Carlomagno, G.M., Thermal (IR) and other NDT techniques for improved material inspection, J. Nondestr. Eval., 2016, vol. 35 (18), pp. 160–174. https://doi.org/10.1007/s10921-015-0331-7

    Article  Google Scholar 

  97. Saxena, A., Raman, V., and Ng, E.Y.K., Study on methods to extract high contrast image in active dynamic thermography, Quant. Infrared Thermogr. J., 2019, vol. 16, nos. 3–4, pp. 343–259. https://doi.org/10.1080/17686733.2019.1586376

    Article  Google Scholar 

  98. Abdulrahman, Y.A., Omar, M.A., Said, Z., Obeideli, F., Abusafieh, A., and Sankaran, G.N., A Taguchi design of experiment approach to pulse and pock-in thermography, applied to CFRP composites, J. Nondestr. Eval., 2017, vol. 36, p. 72. https://doi.org/10.1007/s10921-017-0450-4

    Article  Google Scholar 

Download references

ACKNOWLEDGEMENTS

The author is grateful to A.O. Siddiqui for providing an original reference sample of a composite with defects of various nature.

Funding

The work was carried out with the financial support of the Ministry of Science and Higher Education of the Russian Federation within the framework of the State Task “Science,” project no. FSWW-2023-0004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Vavilov.

Ethics declarations

The author of this work declares that he has no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vavilov, V.P. Thermal Nondestructive Testing: Development of Conventional Directions and New Trends (A Review). Russ J Nondestruct Test 59, 702–723 (2023). https://doi.org/10.1134/S1061830923700432

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061830923700432

Keywords:

Navigation