Skip to main content
Log in

Using Kelvin probe force microscopy for controlling the phase composition of austenite–martensite chromium–nickel steel

  • Electric Methods
  • Published:
Russian Journal of Nondestructive Testing Aims and scope Submit manuscript

Abstract

The effectiveness of Kelvin probe force microscopy, which is one of the scanning probe techniques, is demonstrated for assessing plastic-deformation induced changes in the phase composition of 08Kh21N6M2T austenite–martensite chromium–nickel steel. Changes in the numerical values of surface potentials of different phase components of two- and three-phase stainless steels versus sample deformation extent have been established. Dependence of surface electric potentials as measured with Kelvin probe force microscopy on the presence and amount of newly formed deformationmartensite phase has been discovered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mikheev, M.N., Belenkova, M.M., Vitkalova, R.N., Kogan, L.Kh., and Anoprienko, S.S., AN electromagnetic method for determining deformation martensite in stainless steels, Defektoskopiya, 1985, no. 10, pp. 48–51.

    Google Scholar 

  2. Pudov, V.I., Gorkunov, E.S., Rigmant, M.B., and Nichipuruk, A.P., RF Patent 2166191, 1999.

  3. Merinov, P.E. and Mazepa, A.G., Determining deformation martensite in austenitic steels with a magnetic method, Zavod. Lab., 1997, no. 3, pp. 47–49.

    Google Scholar 

  4. Rigmant, M.B., Nichipuruk, A.P., and Korkh, M.K., The possibility of separate measurements of the amounts of ferrite and deformation martensite in three-phase austenitic-class steels using the magnetic method, Russ. J. Nondestr. Test., 2012, vol. 48, no. 9, pp. 511–521.

    Article  Google Scholar 

  5. Korkh, M.K., Rigmant, M.B., Davydov, D.I., Shishkin, D.A., Nichipuruk, A.P., and Korkh, Yu.V., Determination of the phase composition of three-phase chromium–nickel steels from their magnetic properties, Russ. J. Nondestr. Test., 2015, vol. 51, no. 12, pp. 727–737.

    Article  Google Scholar 

  6. Shcherbinin, V.E. and Gorkunov, E.S., Magnitnyi kontrol’ kachestva metallov (Magnetic Testing of Quality of Metals), Yekaterinburg: Ural Branch, Russ. Acad. Sci., 1996.

    Google Scholar 

  7. Apaev, B.A., Fazovyi magnitnyi analiz splavov (Magnetic Phase Analysis of Alloys), Moscow: Metallurgiya, 1976.

    Google Scholar 

  8. Entin, R.I., Prevrashcheniya austenita v stali (Transformations of Austenite in Steel), Moscow: Gos. Nauchno- Tekh. Izd. Lit. Chern. Tsvetn. Metall., 1960.

    Google Scholar 

  9. Korkh, M.K., Korkh, Yu.V., and Ogneva, M.S., Effect of deformation on phase composition and magnetic and electric properties of austenitic chromium–nickel steels, Mater. XXVIII Ural’skoi konf. po nerazrushayushchemu kontrolyu (Proc. XXVIII Ural Conf. Nondestr. Test.), Yekaterinburg, 2015.

    Google Scholar 

  10. Bida, G.V. and Nichipuruk, A.P., Magnitnye svoistva termoobrabotannykh stalei (Magnetic Properties of Heat-Treated Steels), Yekaterinburg: Ural Branch, Russ. Acad. Sci., 2005.

    Google Scholar 

  11. Gorkunov, E.S., Zadvorkin, S.M., Goruleva, L.S., and Bukhvalov, A.B., On the efficiency of application of magnetic and electrical parameters for nondestructive testing of crystal-lattice microdistortions in heat-treated carbon steels, Russ. J. Nondestr. Test., 2012, vol. 48, no. 3, pp. 166–175.

    Article  Google Scholar 

  12. Nonnenmacher, M., O’Boyle, M.P., and Wickramasinghe, H.K., Kelvin probe force microscopy, Appl. Phys. Lett., 1991, vol. 58(25), pp. 2921–2923.

    Article  Google Scholar 

  13. Dunaevskiy, M.S., Alekseev, P.A., Girard, P., et al., Kelvin probe force gradient microscopy of charge dissipation in nano thin dielectric layers, J. Appl. Phys., 2011, vol. 110.

  14. Melitz, W., Shen, J., Kummel, A.C., and Lee, S., Kelvin probe force microscopy and its application, Surf. Sci. Rep., 2011, vol. 66, pp. 1–27.

    Article  Google Scholar 

  15. Guo, Y., Hu, J., Li, J., Jiang, L., Liu, T., and Wu, Y., Effect of annealing temperature on the mechanical and corrosion behavior of a newly developed novel lean duplex stainless steel, Materials, 2014, vol. 7, pp. 6604–6619.

    Article  Google Scholar 

  16. Schmutz, P. and Frankel, G.S., Characterization of AA2024-T3 by scanning Kelvin probe force microscopy, J. Electrochem. Soc., 1998, vol. 145, no. 7, pp. 2285–2295.

    Article  Google Scholar 

  17. Sathirachinda, N., Pettersson, R., and Pan, J., Depletion effects at phase boundaries in 2205 duplex stainless steel characterized with SKPFM and TEM/EDS, Corros. Sci., 2009, vol. 51, pp. 1850–1860.

    Article  Google Scholar 

  18. Rigmant, M.B., Korkh, M.K., Davydov, D.I., Shishkin, D.A., Korkh, Yu.V., Nichipuruk, A.P., and Kazantseva, N.V., Methods for revealing deformation martensite in austenitic–ferritic steels, Russ. J. Nondestr. Test., 2015, vol. 51, no. 11, pp. 680–691.

    Article  Google Scholar 

  19. Jacobs, H.O., Leuchtmann, P., Homan, O.J., and Stemmer, A., Resolution and contrast in Kelvin probe force microscopy, J. Appl. Phys., 1998, vol. 84, no. 3, pp. 1168–1173.

    Article  Google Scholar 

  20. Guo, L.Q., Li, M., Shi, X.L., Yan, Y., Li, X.Y., and Qiao, L.J., Effect of annealing temperature on the corrosion behavior of duplex stainless steel studied by in situ techniques, Corros. Sci., 2011, vol. 53, no. 11, pp. 3733–3741.

    Article  Google Scholar 

  21. Femenia, M., Canalias, C., Pana, J., and Leygraf, C., Scanning Kelvin probe force microscopy and magnetic force microscopy for characterization of duplex stainless steels, J. Electrochem. Soc., 2003, vol. 150, no. 6, pp. B274–B281.

    Article  Google Scholar 

  22. Örnek, C. and Engelberg, D.L., SKPFM measured Volta potential correlated with strain localisation in microstructure to understand corrosion susceptibility of cold-rolled grade 2205 duplex stainless steel, Corros. Sci., 2015, vol. 99, pp. 164–171.

    Article  Google Scholar 

  23. Kurdyumov, G.V., Utevskii, L.M., and Entin, R.I., Prevrashcheniya v zheleze i stali (Transformations in Iron and Steel), Moscow: Nauka, 1977.

    Google Scholar 

  24. Gol’dshtein, M.I., Grachev, S.V., and Veksler, Yu.G., Spetsial’nye stali: Uchebnik dlya vuzov (Special Steels: a Handbook for Universities), Moscow: Mosk. Inst. Stali Splavov, 1999, 2nd ed.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Korkh.

Additional information

Original Russian Text © M.K. Korkh, Yu.V. Korkh, M.B. Rigmant, N.V. Kazantseva, N.I. Vinogradova, 2016, published in Defektoskopiya, 2016, No. 11, pp. 59–69.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korkh, M.K., Korkh, Y.V., Rigmant, M.B. et al. Using Kelvin probe force microscopy for controlling the phase composition of austenite–martensite chromium–nickel steel. Russ J Nondestruct Test 52, 664–672 (2016). https://doi.org/10.1134/S1061830916110036

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061830916110036

Keywords

Navigation