Skip to main content
Log in

Estimation of the quality of strengthening frictional treatment and subsequent tempering of eutectoid steel by the eddy-current method

  • Magnetic Methods
  • Published:
Russian Journal of Nondestructive Testing Aims and scope Submit manuscript

Abstract

The possibilities of the electromagnetic eddy-current method for evaluating the structural state and depth of strengthened layers on the surface of hardened and low-tempered steel U8 subjected to plastic straining using a hard-alloy indenter and subsequent heat treatment (tempering at T = 100–600°C) have been studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alekhin, V.P., Fizika prochnosti i plastichnosti poverkhnostnykh sloev materialov (Physics of Surface Strength and Plasticity), Moscow: Nauka, 1983.

    Google Scholar 

  2. Terent’ev, V.F., Ustalostnaya prochnost’ metallov i splavov (Fatigue Strength of Metals and Alloys), Moscow: Intermet Inzhiniring, 2002.

    Google Scholar 

  3. Frolov, K.V., Reliability and Lifetime of Machines and Mechanisms, Vestn. Akad. Nauk SSSR, 1985, no. 8, pp. 74–84.

  4. Odintsov, L.G., Uprochnenie i otdelka detalei poverkhnostnym plasticheskim deformirovaniem. Spravochnik (Strengthening and Finishing of Parts by Surface Plastic Straining: Handbook), Moscow: Mashinostroenie, 1987.

    Google Scholar 

  5. Chen, X.H., Lu, J., Lu, L., and Lu, K., Tensile Properties of a Nanocrystalline 316L Austenitic Stainless Steel, Scripta Materiala, 2005, vol. 52, no. 10, pp. 1039–1044.

    Article  CAS  MathSciNet  Google Scholar 

  6. Roland, T., Retraint, D., Lu, K., and Lu, J., Enhanced Mechanical Behavior of a Nanocrystallized Stainless Steel and Its Thermal Stability, Materials Science and Engineering: A, 2007, vols. 445–446, pp. 281–288.

    Article  Google Scholar 

  7. Wang, Z.B., Tao, N.R., Li, S., Wang, W., Liu, G., Lu, J., and Lu, K., Effect of Surface Nanocrystallization on Friction and Wear Properties in Low Carbon Steel, Materials Science and Engineering: A, 2003, vol. 352, nos. 1–2, pp. 144–149.

    Article  Google Scholar 

  8. Lu, K. and Lu, J., Nanostructured Surface Layer on Metallic Materials Induced by Surface Mechanical Attrition Treatment, Materials Science and Engineering: A, 2004, vols. 375–377, pp. 38–45.

    Article  Google Scholar 

  9. Makarov, A.V. and Korshunov, L.G., Strength and Wear Resistance of Nanocrystalline Structures of Friction Surface of Martensite-Based Steels, Izv. Vyssh. Uchebn. Zaved., Fiz., 2004, no. 8, pp. 65–80.

  10. Makarov, A.V. and Korshunov, L.G., Increasing the Hardness and Wear Resistance of Laser-Hardened Steel Surfaces by Frictional Treatment, Tren. Iznos, 2003, vol. 24, no. 3, pp. 301–306.

    CAS  Google Scholar 

  11. Makarov, A.V., Korshunov, L.G., Malygina, I.Yu., and Solodova, I.L., Increasing the Heat Resistance and Wear Resistance of Hardened Carbon Steels by Frictional Strengthening Treatment, Metalloved. Term. Obrab. Metal., 2007, no. 3, pp. 57–62.

  12. Shif, I.M. and Neizvestnov, B.M., Magnetic Testing of Surface Strengthening of Plastically Strained Layers of Steel Parts, Defektoskopiya, 1965, no. 6, pp. 27–35.

  13. Rodigin, N.M., Pravdin, L.S., Syrochkin, V.P., et al., Testing the Cold-Work Hardening of Steel Shafts by the Eddy-Current Method. III, Defektoskopiya, 1970, no. 4, pp. 130–136.

  14. Lomaev, G.V., Malyshev, V.S., and Degyarev, A.P., Review of Applications of the Barkhausen Effect in Nondestructive Testing, Defektoskopiya, 1984, no. 3, pp. 54–70.

  15. Filinov, V.V., Sokolik, A.I., and Shaternikov, V.E., Influence of Surface Plastic Straining of Steel Articles on the Parameters of the Barkhausen Effect, Defektoskopiya, 1986, no. 6, pp. 37–40.

  16. Vengrinovich, V.L. and Bus’ko, V.N., Features of Inspection by the Barkhausen Effect of the Parameters of the Surface Layers Strengthened by Surface Plastic Straining, Defektoskopiya, 1988, no. 10, pp. 56–61.

  17. Makarov, A.V., Savrai, R.A., Gorkunov, E.S., et al., Effect of Strengthening Frictional Treatment on the Features of Magnetic and Eddy-Current Testing of Annealed Structural Steel Subjected to Cyclic Loading, Defektoskopiya, 2008, no. 7, pp. 74–92 [Rus. J. Nondestr. Test. (Engl. Transl.), 2008, vol. 44, no. 7, pp. 496–508].

  18. Bida, G.V., Magnetic Testing of the Depth and Hardness of Surface-Strengthened Layers on Articles (Review), Defektoskopiya, 2006, no. 5, pp. 10–28 [Rus. J. Nondestr. Test. (Engl. Transl.), 2006, vol. 42, no. 5, pp. 296–308].

  19. Makarov, A.V., Korshunov, L.G., and Osintseva, A.L., RF Patent 2194773, Izobreteniya. Poleznye Modeli, 2002, no. 35.

  20. Panin, A.V., Klimenov, V.A., Pochivalov, Yu.I., and Son, A.A., Effect of the State of the Surface Layer on the Mechanism of Plastic Flow and Strain Resistance of Low-Carbon Steel, Phys. Mesomechan., 2001, vol. 4, no. 4, pp. 85–92.

    CAS  Google Scholar 

  21. Wang, J.T., Xu, C., Du, Z.Z., Qu, G.Z., and Langdon, T.G., Microstructure and Properties of a Low-Carbon Steel Processed by Equal-Channel Angular Pressing, Materials Science Engineer.: A, 2005, vols. 410–411, pp. 312–315.

    Article  Google Scholar 

  22. Mel’nikov, I.V., Semenov, E.N., and Trushkevch, R.K., Eddy-Current Testing of Structural and Mechanical Properties of Surface Layers of Parts of Bearings, Defektoskopiya, 1990, no. 5, pp. 55–60.

  23. Makarov, A.V., Gorkunov, E.S., Kogan, L.Kh., et al., Features of Electromagnetic Methods for Testing the Wear Resistance of Medium-Carbon Structural Steel Subjected to Laser or Bulk Hardening and Tempering, Defektoskopiya, 2006, no. 7, pp. 28–39 [Rus. J. Nondestr. Test. (Engl. Transl.), 2006, vol. 42, no. 7, pp. 443–452].

  24. Dorofeev, A.L., Induktsionnaya strukturoskopiya (Induction Structuroscopy), Moscow: Energiya, 1973.

    Google Scholar 

  25. Korshunov, L.G., Makarov, A.V., Chernenko, N.L., and Nasonov, S.P., Structure, Strength, and Heat Stability of Martensite in Steel U8 Strained by Friction, Fiz. Met. Metalloved., 1996, vol. 82, no. 2, pp. 38–48.

    CAS  Google Scholar 

  26. Heilmann, P., Clark, W.A., and Rigney, D.A., Orientation Determination of Subsurface Cells Generated by Sliding, Acta Metall., 1983, vol. 31, no. 8, pp. 1293–1305.

    Article  CAS  Google Scholar 

  27. Makarov, A.V., Korshunov, L.G., Solodova, I.L., and Malygina, I.Yu., Hardness, Heat Stability, and Tribological Properties of Hardened Carbon Steels Strengthened under Exposure to Sliding Friction, Deform. Razrush. Material., 2006, no. 4, pp. 26–33.

  28. Makarov, A.V., Korshunov, L.G., Solodova, I.L., and Malygina, I.Yu., Evolution under Heating of a Nanocrystalline Structure Formed by an Intense Plastic Strain on the Surface of Eutectoid Steel, Materialy III Mezhdunarodnoi shkoly “Fizicheskoe materialovedenie,” “Nanomaterialy tekhnicheskogo i meditsinskogo naznacheniya” (Proc. of III Int. School “Physical Materials Science,” “Nanomaterials for Use in Techology and Medicine”), Tolyatti, 2007, pp. 199–202.

  29. Kalish, D. and Kohen, M., Structural Changes and Strengthening in the Strain Tempering of Martensite, Materials Science and Engineering, 1970, vol. 6, no. 3, pp. 156–166.

    Article  CAS  Google Scholar 

  30. Hirth, I.P. and Rigney, D.A., The Application of Dislocation Concepts in Friction and Wear. Dislocations in Solids, Nabarrro, F.R.N., Ed., 1983, vol. 6, chap. 25, pp. 3–54.

    Google Scholar 

  31. Balter, M.A., Uprochnenie detalei mashin (Strengthening of Parts of Machines), Moscow: Mashinostroenie, 1978.

    Google Scholar 

  32. Gavrilyuk, V.G., Raspredelenie ugleroda v stali (Carbon Distribution in Steel), Kiev: Naukova dumka, 1987.

    Google Scholar 

  33. Wilson, D.V., Effects of Plastic Deformation on Carbide Precipitation in Steel, Acta Metall., 1957, vol. 5, no. 6, pp. 293–302.

    Article  CAS  Google Scholar 

  34. Dyakin, V.V. and Sandovskii, V.A., Teoriya i raschet nakladnykh vikhretokovykh preobrazovatelei (Theory and Calculation of Attachable Eddy-Current Transducers), Moscow: Nauka, 1981.

    Google Scholar 

  35. Sandovskii, V.A. and Nosal’skaya, N.I., Measuring Electric Conductivity and Magnetic Permeability Using Attachable Eddy-Current Transducers, Defektoskopiya, 1991, no. 12, pp. 44–48.

  36. Gorkunov, E.S., Kogan, L.Kh., Morozova, V.M., and Baraz, E.M., Eddy-Current Quality Control of Tempering of Thin-Sheet Carbon-Steel Articles under Carbon-Content Variations, Defektoskopiya, 1993, no. 3, pp. 62–66.

  37. Makarov, A.V., Schastlivtsev, V.M., Gorkunov, E.S., et al., Possibilities of NDT of Physicomechanical Characteristics of Hypereutectoid Carbon Steels with Structures of Isothetmal Austenite Decomposition, Defektoskopiya, 2002, no. 10, pp. 62–86 [Rus. J. Nondestr. Test. (Engl. Transl.), 2002, vol. 38, no. 10, pp. 767–787].

  38. Kogan, L.Kh., Nichipuruk, A.P., and Gavrilova, L.D., Effect of the Carbon Content on Magnetic and Electric Properties of Heat-Treated Carbon Steels and the Capabilities of the Eddy-Current Method of Controlling the Quality of Tempering Carbon-Steel Articles, Defektoskopiya, 2006, no. 9, pp. 72–90 [Rus. J. Nondestr. Test. (Engl. Transl.), 2006, vol. 42, no. 9, pp. 616–629].

  39. Gorkunov, E.S., Savrai, R.A., Makarov, A.V., et al., Application of the Eddy-Current Method for Evaluating the Stored Plastic Strain and the Residual Mechanical Properties after Cyclic Loading of Annealed Medium-Carbon Steel, Defektoskopiya, 2007, no. 4, pp. 24–30 [Rus. J. Nondestr. Test. (Engl. Transl.), 2007, vol. 43, no. 4, pp. 228–233].

  40. Thompson, S.M. and Tanner, B.K., The Magnetic Properties of Specially Prepared Pearlitic Steels of Varying Carbon Content As a Function of Plastic Deformation, J. Magnet. Magnetic Materials, 1994, no. 132, pp. 71–88.

  41. Nichipuruk, A.P., Noskova, N.I., Gorkunov, E.S., and Ponomareva, E.G., Influence of the Dislocation Structure Formed by a Plastic Strain on the Magnetic and Magnetoelastic Properties of Iron and Low-Carbon Steel, Fiz. Met. Metalloved., 1992, no. 12, pp. 81–87.

  42. Kuleev, V.G., Tsar’kova, T.P., and Nichipuruk, A.P., Effect of Tensile Plastic Strains on the Residual Magnetization and the Initial Permeability of Low-Carbon Steels, Defektoskopiya, 2006, no. 4, pp. 61–74 [Rus. J. Nondestr. Test. (Engl. Transl.), 2006, vol. 42, no. 4, pp. 261–271].

  43. Vasil’eva, A.G., Deformatsionnoe uprochnenie zakalennykh konstruktsionnykh stalei (Strain-Induced Strengthening of Hardened Structural Steels), Moscow: Mashinostroenie, 1981.

    Google Scholar 

  44. Vonsovskii, S.V., Magnetizm (Magnetism), Moscow: Nauka, 1971.

    Google Scholar 

  45. Makarov, A.V., Kogan, L.Kh., Gorkunov, E.S., and Kolobylin, Yu.M., Eddy-Current Evaluation of the Wear Resistance of Case-Hardened Chromium-Nickel Steel 20XH3A, Defektoskopiya, 2001, no. 2, pp. 67–78 [Rus. J. Nondestr. Test. (Engl. Transl.), 2001, vol. 37, no. 2, pp. 136–144].

  46. Makarov, A.V., Gorkunov, E.S., Kogan, L.Kh., et al., Eddy-Current and Coercimetric Testing of the Abrasion-Resistant Ball Bearing Steel III Subjected to Laser and Bulk Heat Treatment, Defektoskopiya, 2006, no. 10, pp. 3–16 [Rus. J. Nondestr. Test. (Engl. Transl.), 2006, vol. 42, no. 10, pp. 639–647].

  47. Makarov, A.V., Gorkunov, E.S., Kogan, L.Kh., and Kolobylin, Yu.M., Coercive-Force and Eddy-Current Testing of the Abrasive Wear Resistance of Hardened and Tempered Hypereutectoid Carbon Steels: II. Steels Subjected to Different Hardening Regimes, Subzero Treatment, and Tempering after High-Temperature Hardening, Defektoskopiya, 2007, no. 5, pp. 12–29 [Rus. J. Nondestr. Test. (Engl. Transl.), 2007, vol. 43, no. 5, pp. 288–301].

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.V. Makarov, E.S. Gorkunov, L.Kh. Kogan, I.Yu. Malygina, 2009, published in Defektoskopiya, 2009, Vol. 45, No. 2, pp. 78–91.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makarov, A.V., Gorkunov, E.S., Kogan, L.K. et al. Estimation of the quality of strengthening frictional treatment and subsequent tempering of eutectoid steel by the eddy-current method. Russ J Nondestruct Test 45, 133–142 (2009). https://doi.org/10.1134/S1061830909020089

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061830909020089

Keywords

Navigation