Skip to main content
Log in

Data Analysis and Interpretation: Methods of Computer-Aided Measuring Transducer Theory, Morphological Analysis, Possibility Theory, and Subjective Mathematical Modeling

  • SCIENTIFIC SCHOOLS OF THE LOMONOSOV MOSCOW STATE UNIVERSITY (MSU), MOSCOW, THE RUSSIAN FEDERATION
  • Faculty of Physics Yu.P. Pyt’ev’s Scientific School
  • Published:
Pattern Recognition and Image Analysis Aims and scope Submit manuscript

Abstract

This article provides an overview of the fundamental research directions being pursued at the Faculty of Physics of Lomonosov Moscow State University under the guidance of Professor Yuri Petrovich Pyt’ev. These research directions can be categorized into three primary areas: methods of morphological analysis of images and signals, theory of computer-aided measuring systems, and methods related to the theory of possibilities and subjective mathematical modeling. The article elucidates the foundational ideas and concepts of these directions, contemplates alternative approaches to address similar challenges, and offers both model-based and application-driven examples utilizing the methods corresponding to these directions and their combinations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig.19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.
Fig. 25.
Fig. 26.

Notes

  1. An ideal MT is an MT interacting with the measured object in the same way as an MT in a CAMT, whose output signal is equal to the Uf value of the characteristic of the SO of interest.

  2. A measurement model is a mathematical model of the MT interacting with the measured object and with the environment, linking its input and output signals. The model of interpretation of the input signal of the MT is the mathematical model linking its input signal and CIMR of the object under study undisturbed by measurement.

  3. \({{B}^{ - }}\) and \(B{\kern 1pt} \text{*}\) are the operators pseudoinverse to \(B\) and conjugate to \(B\), \({{B}^{ - }}\) = \(\mathop {\lim }\limits_{\alpha \to 0} B{\kern 1pt} \text{*}{\kern 1pt} {{(BB{\kern 1pt} \text{*} + \;\alpha I)}^{{ - 1}}}\) = \(\mathop {\lim }\limits_{\alpha \to 0} {{(B{\kern 1pt} \text{*}{\kern 1pt} B + \alpha I)}^{{ - 1}}}B{\kern 1pt} \text{*}\) [148].

REFERENCES

  1. M. N. Agapov, S. V. Klishin, V. V. Mikhailin, and Yu. P. Pyt’ev, “A reduction method for optical spectral analysis from photoemission data,” Moscow Univ. Phys. Bull. 43 (6), 87–89 (1988).

    MathSciNet  Google Scholar 

  2. C. Antoniou, G. W. Harrison, M. I. Lau, and D. Read, “Subjective Bayesian beliefs,” SSRN Electron. J. 50, 403–420 (2015). https://doi.org/10.2139/ssrn.2247318

  3. V. A. Antonyuk, N. V. Bulygina, and Yu. P. Pyt’ev, Methods of Morphological Analysis in Problem of Object Extraction (Nauka, Moscow, 1984).

    Google Scholar 

  4. V. A. Antonyuk, “An algorithm of rigorous consensus ranking,” Intellektual’nye Sist. Teoriya Prilozheniya 25 (3), 11–34 (2021).

    Google Scholar 

  5. V. K. Avilov, V. S. Aleshnovskii, A. V. Bezrukova, V. A. Gazaryan, N. A. Zyuzina, Yu. A. Kurbatova, D. A. Tarbaev, A. I. Chulichkov, and N. E. Shapkina, “Morphological and other research techniques for almost cyclic time series as applied to CO2 concentration series,” Comput. Math. Math. Phys. 61, 1106–1117 (1106). https://doi.org/10.1134/s0965542521070046

  6. D. A. Balakin and Yu. P. Pyt’ev, “A comparative analysis of reduction quality for probabilistic and possibilistic measurement models,” Moscow Univ. Phys. Bull. 72, 101–112 (2017). https://doi.org/10.3103/s0027134917020047

    Article  Google Scholar 

  7. D. A. Balakin, “The empirical construction of mathematical models of measuring and optimal computing transducers,” Moscow Univ. Phys. Bull. 72, 168–175 (2017). https://doi.org/10.3103/s0027134917020059

    Article  Google Scholar 

  8. D. A. Balakin, “Improvement of measurement reduction of tomographic images using non-negativity of brightness,” Proc. SPIE 12084, 120841K (2022). https://doi.org/10.1117/12.2622648

  9. D. A. Balakin and Yu. P. Pyt’ev, “Measurement reduction in the presence of subjective information,” Math. Models Comput. Simul. 11, 596–610 (2019). https://doi.org/10.1134/s2070048219040033

    Article  MathSciNet  Google Scholar 

  10. D. A. Balakin, “Order representation of distribution of possibility measure,” Intellektual’nye Sist. Teoriya Prilozheniya 20 (1), 4–27 (2017).

    Google Scholar 

  11. D. A. Balakin, “Numerical methods for computing plausibility and belief distributions of consequences of a subjective model of object of research,” Comput. Math. Math. Phys. 58, 790–802 (2018). https://doi.org/10.1134/s0965542518050032

    Article  MathSciNet  Google Scholar 

  12. D. A. Balakin, “Reduction of images to the form typical for measuring the distribution of object transparency with subjective information about its sparsity in a given basis,” Moscow Univ. Phys. Bull. 75, 26–34 (2020). https://doi.org/10.3103/s0027134920010038

    Article  Google Scholar 

  13. V. C. Bhavsar and A. M. Mironov, “Fuzzy modal logics,” in Proceedings of Workshop on Multi-Valued Logic Programming and Applications, MVLPA 2006 (Seattle, Wash., 2006), pp. 73–88.

  14. S. P. Bondarenko, Yu. P. Pyt’ev, and M. L. Serdobol’skaya, “On extreme possibilities of measurement-computer system as measuring device,” Matematicheskoe Model. 5 (9), 43–54 (1993).

    Google Scholar 

  15. S. P. Bondarenko and Yu. P. Pyt’ev, “The effective rank of a model of linear measurement with an error,” Comput. Math. Math. Phys. 35 (1), 1–14 (1995).

    MathSciNet  Google Scholar 

  16. S. A. Brianskiy, S. V. Sidyakin, and Y. V. Vizilter, “Orientation spectrum algorithm development,” Int. Arch. Photogrammetry, Remote Sensing Spatial Inf. Sci. 40-5/W6 (6), 13–18 (2015). https://doi.org/10.5194/isprsarchives-xl-5-w6-13-2015

  17. A. G. Bronevich and A. V. Goncharov, “An axiomatic approach to measuring of information of sign-based image representations,” J. Comput. Syst. Sci. Int. 50, 51–66 (2011). https://doi.org/10.1134/s1064230710061012

    Article  MathSciNet  Google Scholar 

  18. A. G. Bronevich, A. N. Karkishchenko, and A. E. Lepskii, Analysis of Uncertainty in Extraction of Informative Attributes and Image Representation (Fizmatlit, Moscow, 2013).

    Google Scholar 

  19. E. A. Cheremukhin and A. I. Chulichkov, “On the application of computer measurement systems in tomography,” Comput. Math. Math. Phys. 45, 716–726 (2005).

    MathSciNet  Google Scholar 

  20. G. Choquet, “Theory of capacities,” Ann. Inst. Fourier 5, 131–295 (1954). https://doi.org/10.5802/aif.53

    Article  MathSciNet  Google Scholar 

  21. A. I. Chulichkov and E. M. Mol’kov, “Improving the resolution for an image of nonnegative brightness distorted by a linear transform,” in Proc. 6th Int. Conf. and Youth School on Information Technologies and Nanotechnologies, Ed. by V. V. Myasnikov (Samarsk. Nats. Issled. Univ. im. Akademika S.P. Koroleva, Samara, 2020), pp. 565–571. https://doi.org/10.17223/9785946219242/192

  22. A. I. Chulichkov and B. Yuan, “Effective rank of a problem of function estimation based on measurement with an error of finite number of its linear functionals,” Comput. Res. Model. 6, 189–202 (2014). https://doi.org/10.20537/2076-7633-2014-6-2-189-202

    Article  Google Scholar 

  23. G. de Cooman, “Possibility theory I: The measure- and integral-theoretic groundwork,” Int. J. Gen. Syst. 25, 291–323 (1997). https://doi.org/10.1080/03081079708945160

    Article  MathSciNet  Google Scholar 

  24. G. de Cooman, “Possibility theory II: Conditional possibility,” Int. J. Gen. Syst. 25, 325–351 (1997). https://doi.org/10.1080/03081079708945161

    Article  MathSciNet  Google Scholar 

  25. G. de Cooman, “Possibility theory III: Possibilistic independence,” Int. J. Gen. Syst. 25, 353–371 (1997). https://doi.org/10.1080/03081079708945162

    Article  MathSciNet  Google Scholar 

  26. R. G. Cowell, A. P. Dawid, S. L. Lauritzen, and D. J. Spiegelhalter, Probabilistic Networks and Expert Systems (Springer-Verlag, Berlin, 1999).

    Google Scholar 

  27. D. S. Demin and A. I. Chulichkov, “Filtering of monotonic convex noise-distorted signals and estimates of positions of special points,” J. Math. Sci. 172, 770–781 (2011). https://doi.org/10.1007/s10958-011-0220-2

    Article  MathSciNet  Google Scholar 

  28. A. P. Dempster, “Upper and lower probabilities induced by a multivalued mapping,” Ann. Math. Stat. 38, 325–339 (1967). https://doi.org/10.1214/aoms/1177698950

    Article  MathSciNet  Google Scholar 

  29. A. P. Dempster, “A generalization of Bayesian inference,” J. R. Stat. Soc.: Ser. B (Methodological) 30, 205–232 (1968). https://doi.org/10.1111/j.2517-6161.1968.tb00722.x

    Article  MathSciNet  Google Scholar 

  30. E. R. Dougherty, “The dual representation of gray-scale morphological filters,” in Proceedings CVPR ‘89: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, Calif., 1989 (IEEE, 1989), Vol. 172, p. 177. https://doi.org/10.1109/cvpr.1989.37846

  31. D. Dubois and E. Hüllermeier, “Comparing probability measures using possibility theory: A notion of relative peakedness,” Int. J. Approximate Reasoning 45, 364–385 (2007). https://doi.org/10.1016/j.ijar.2006.06.017

    Article  MathSciNet  Google Scholar 

  32. D. Dubois and H. Prade, Fuzzy Sets and Systems—Theory and Applications, Mathematics in Science and Engineering, Vol. 144 (Academic, 1980). https://doi.org/10.1016/S0076-5392(13)60164-2

  33. D. Dubois and H. Prade, “A note on measures of specificity for fuzzy sets,” Int. J. Gen. Syst. 10, 279–283 (1985). https://doi.org/10.1080/03081078508934893

    Article  MathSciNet  Google Scholar 

  34. D. Dubois and H. Prade, Possibility Theory: An Approach to Computerized Processing of Uncertainty (Plenum Press, New York, 1988).

    Google Scholar 

  35. D. Dubois and H. Prade, “Fuzzy sets and probability: Misunderstandings, bridges and gaps,” in Second IEEE Int. Conf. on Fuzzy Systems, San Francisco, 1993 (1993), pp. 1059–1068. https://doi.org/10.1109/FUZZY.1993.327367

  36. D. Dubois, “Possibility theory and statistical reasoning,” Comput. Stat. Data Anal. 51, 47–69 (2006). https://doi.org/10.1016/j.csda.2006.04.015

    Article  MathSciNet  Google Scholar 

  37. D. Dubois, H. T. Nguyen, and H. Prade, “Possibility theory, probability and fuzzy sets misunderstandings, bridges and gaps,” in Fundamentals of Fuzzy Sets, Ed. by D. Dubois and H. Prade, The Handbooks of Fuzzy Sets Series, Vol. 7 (Springer, 2000), pp. 343–438. https://doi.org/10.1007/978-1-4615-4429-6_8

    Book  Google Scholar 

  38. D. Dubois and H. Prade, “Formal representations of uncertainty,” in Decision-Making Process, Ed. by D. Bouyssou, D. Dubois, M. Pirlot, and H. Prade (Wiley-ISTE, London, 2009), pp. 85–156. https://doi.org/10.1002/9780470611876.ch3

    Book  Google Scholar 

  39. D. Dubois and H. Prade, “Possibility theory, probability theory and multiple-valued logics: a clarification,” Ann. Math. Artif. Intell. 32, 35–66 (2001). https://doi.org/10.1023/A:1016740830286

    Article  MathSciNet  Google Scholar 

  40. I. V. D’yakonova, T. V. Matveeva, and Yu. P. Pyt’ev, “Reduction of measurements of fuzzy sets,” Pattern Recognit. Image Anal. 11, 711–717 (2001).

    Google Scholar 

  41. N. G. Efimkin, B. S. Ishkhanov, and Yu. P. Pyt’ev, “The use of the reduction method to increase the resolution of photonuclear experiments,” Moscow Univ. Phys. Bull. 43 (6), 46–52 (1988).

    Google Scholar 

  42. I. S. Emel’yanenko, Yu. V. Lazarev, and Yu. P. Pyt’ev, “Tracing the line and extraction of small singularities in the problem of analyzing ridge patterns,” in Identification of Ridge Patterns on Optical-Digital Complex (Dal’nevostochnyi Gos. Univ., Vladivostok, 1980), pp. 40–49.

    Google Scholar 

  43. A. G. Ermolaev and Yu. P. Pyt’ev, “The problem of noisekilling for the special type images,” Moscow Univ. Phys. Bull. 36 (6), 82 (1981).

    Google Scholar 

  44. I. K. Ermolaev and A. A. Chulkov, “Physical principles for combining images acquired with remote probing,” Moscow Univ. Mech. Bull. 41 (6), 115–118 (1986).

    Google Scholar 

  45. A. G. Ermolaev and Yu. P. Pyt’ev, “A priori estimates of useful signal for morphological analysis of resolving algorithms,” Avtometriya, No. 5, 118–120 (1984).

  46. A. P. Ershov, A. A. Kuzovnikov, and S. E. Ponomareva, “Application of the reduction method to the microwave interferometry of shock waves in a weakly ionized plasma,” Zh. Tekh. Fiz. 59 (8), 142–145 (1989).

    Google Scholar 

  47. S. O. Evsegneev and Yu. P. Pyt’ev, “Analysis and recognition of piecewise constant texture images,” Pattern Recognit. Image Anal. 16, 398–405 (2006). https://doi.org/10.1134/s1054661806030096

    Article  Google Scholar 

  48. E. P. Fadeev and A. V. Zubyuk, “On the algebraic properties of the operations used at constructing modern convolutional neural networks,” in Mathematical Methods of Pattern Recognition: Proc. 19th All-Russian Conf. with Int. Participation (2019), pp. 102–105.

  49. I. I. Falomkin and Yu. P. Pyt’ev, “Algorithm of adaptive morphological filtering of images,” Pattern Recognit. Image Anal. 17, 408–420 (2007). https://doi.org/10.1134/s105466180703008x

    Article  Google Scholar 

  50. O. V. Falomkina, Yu. P. Pyt’ev, and A. I. Chulichkov, “A new method for determining the velocity of a heavy ion based on the mathematical formalism of subjective modeling,” in Mathematical Methods of Pattern Recognition: Proc. 20th All-Russian Conf. with Int. Participation (Moscow, 2021), pp. 440–441.

  51. O. V. Zhuchko and Yu. P. Pyt’ev, “Reconstruction of functional dependences by possibility-theoretic methods,” Comput. Math. Math. Phys. 43, 733–749 (2003).

    MathSciNet  Google Scholar 

  52. K. S. Fu, Syntactic Pattern Recognition and Application (Prentice Hall, Upper Saddle River, N.J., 1982).

    Google Scholar 

  53. M. V. Glazoff, S. N. Rashkeev, Yu. P. Pyt’ev, J.-W. Yoon, and S. Sheu, “Interplay between plastic deformations and optical properties of metal surfaces: A multiscale study,” Appl. Phys. Lett. 95, 84106 (2009). https://doi.org/10.1063/1.3213391

    Article  CAS  Google Scholar 

  54. M. Goldstein, “Subjective Bayesian analysis: Principles and practice,” Bayesian Anal. 1, 403–420 (2006). https://doi.org/10.1214/06-ba116

    Article  MathSciNet  Google Scholar 

  55. P. V. Golubtsov, Yu. P. Pytev, and A. I. Chulichkov, “Problems of optimal measuring of a Gaussian signal,” Moscow Univ. Phys. Bull. 40 (6), 17–21 (1985).

    Google Scholar 

  56. P. V. Golubtsov, Yu. P. Pytev, and A. I. Chulichkov, “Optimal data reduction in physics experiments,” Moscow Univ. Phys. Bull. 41 (2), 7–11 (1986).

    Google Scholar 

  57. R. C. Gonzalez and R. E. Woods, Digital Image Processing (Prentice Hall, Upper Saddle River, N.J., 2002).

    Google Scholar 

  58. R. C. Gonzalez, R. E. Woods, and S. L. Eddings, Digital Image Processing Using MATLAB (Pearson Prentice Hall, 2003).

    Google Scholar 

  59. E. A. Cheremukhin, A. I. Chulichkov, and E. A. Grachev, “An estimation of electron beam current density based on ricking up curves subject to scattering in a diaphragm,” Matematicheskoe Model. 15 (3), 83–91 (2003).

    Google Scholar 

  60. P. V. C. Hough, “Method and means for recognizing complex patterns,” US Patent 3069654 (1962).

  61. Picture Processing and Digital Filtering, Ed. by T. S. Huang, Topics in Applied Physics, Vol. 6 (Springer, Berlin, 1975). https://doi.org/10.1007/978-3-662-41612-9

    Book  Google Scholar 

  62. M. Hussain, D. Chen, A. Cheng, H. Wei, and D. Stanley, “Change detection from remotely sensed images: From pixel-based to object-based approaches,” ISPRS J. Photogrammetry Remote Sensing 80, 91–106 (2013). https://doi.org/10.1016/j.isprsjprs.2013.03.006

    Article  Google Scholar 

  63. A. Jøsang, “A logic for uncertain probabilities,” Int. J. Uncertainty Fuzziness Knowl.-Based Syst. 9, 279–311 (2001). https://doi.org/10.1142/S0218488501000831

    Article  MathSciNet  Google Scholar 

  64. A. Jøsang, Subjective Logic: A Formalism for Reasoning Under Uncertainty, Artificial Intelligence: Foundations, Theory, and Algorithms (Springer, Cham, 2016). https://doi.org/10.1007/978-3-319-42337-1

  65. A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE, 1988).

    Google Scholar 

  66. A. N. Karkishchenko and A. V. Goncharov, “Stability investigation of the sign representation of images,” Autom. Remote Control 71, 1793–1803 (2010). https://doi.org/10.1134/s0005117910090043

    Article  MathSciNet  Google Scholar 

  67. K. V. Kirillov and A. I. Chulichkov, “Measurement reduction in a fuzzy experimental model as a solution of linear programming problems,” Moscow Univ. Phys. Bull. 54 (2), 83–86 (1999).

    Google Scholar 

  68. A. A. Kozlov, V. I. Nikolaev, Yu. P. Pyt’ev, V. S. Rusakov, and A. Yu. Selina, “On the dialogue approach to the solution of the problem of analyzing and interpreting a Mössbauer spectrum,” Moscow Univ. Phys. Bull. 1989 (6), 27–31 (1989).

    Google Scholar 

  69. A. A. Kozlov and Yu. P. Pyt’yev, “The efficiency of reduction of measurements and some problems of metering-computing assembly design,” USSR Comput. Math. Math. Phys. 27 (2), 1–6 (1987). https://doi.org/10.1016/0041-5553(87)90146-7

    Article  Google Scholar 

  70. V. N. Kozlov, Elements of the Mathematical Theory of Visual Perception (Izd-vo Mosk. Gos. Univ., Moscow, 2001).

    Google Scholar 

  71. S. N. Kulichkov, A. I. Chulichkov, and D. S. Demin, Morphological Analysis of Ultrasonic Signals in Acoustics (Novyi Akropol’, Moscow, 2010).

    Google Scholar 

  72. S. Lal, M. Chandra, G. K. Upadhyay, and D. Gupta, “Removal of additive Gaussian noise by complex double density dual tree discrete wavelet transform,” MIT Int. J. Electron. Commun. Eng. 1 (1), 8–16 (2011).

    Google Scholar 

  73. Yu. V. Lazarev and Yu. P. Pyt’ev, “Morphological method in the problem of ridge pattern coding automation,” in Interuniversity Thematic Collection of Sci. Papers on Identification of Ridge Patterns on Optical-Digital Complex (Dal’nevostochnyi Gos. Univ., Vladivostok, 1980), pp. 17–23.

  74. J. Li and R. Mesiar, “Lusin’s theorem on monotone measure spaces,” Fuzzy Sets Syst. 175, 75–86 (2011). https://doi.org/10.1016/j.fss.2011.03.004

    Article  MathSciNet  Google Scholar 

  75. M.-H. Masson and T. Denœux, “Inferring a possibility distribution from empirical data,” Fuzzy Sets Syst. 157, 319–340 (2006). https://doi.org/10.1016/j.fss.2005.07.007

    Article  MathSciNet  Google Scholar 

  76. T. V. Matveeva and Yu. P. Pyt’ev, “Nonlinear reduction of measurements in problems of remote atmosphere probing,” Moscow Univ. Phys. Bull. 46 (4), 99–101 (1991).

    Google Scholar 

  77. T. V. Matveeva and Yu. P. Pyt’ev, “On possibility-theoretic methods for measurement interpretation,” Pattern Recognit. Image Anal. 12, 316–325 (2002).

    Google Scholar 

  78. L. M. Mestetskii, Continuous Morphology of Binary Images: Figures, Skeletons, and Conference Circuits (Fizmatlit, Moscow, 2009).

    Google Scholar 

  79. N. G. Mikheev, A. I. Chulichkov, and V. A. Antonyuk, “Piecewise constant signal estimation by the recording of signal measurements in a linear scheme,” Moscow Univ. Phys. Bull. 76, 73–79 (2021). https://doi.org/10.3103/S0027134921020089

    Article  Google Scholar 

  80. I. V. Mitin and A. I. Chulichkov, “Reliability of parametrically specified model of measurements,” Moscow Univ. Phys. Bull. 44 (4), 7–13 (1989).

    MathSciNet  Google Scholar 

  81. I. V. Mitin and T. D. Shodmonkulov, “The problem of mathematical processing of experimental results from semiconductor nuclear radiation detectors,” Moscow Univ. Phys. Bull. 42 (3), 28–33 (1987).

    Google Scholar 

  82. S. K. Mohideen, “Denoising of images using complex wavelet transform,” Int. J. Adv. Sci. Tech. Res. 1 (2), 176–184 (2012).

    Google Scholar 

  83. T. Muller, D. Wang, and A. Jøsang, “Information theory for subjective logic,” in Modeling Decisions for Artificial Intelligence, Ed. by V. Torra and T. Narukawa, Lecture Notes in Computer Science, Vol. 9321 (Springer, Cham, 2015), pp. 230–242. https://doi.org/10.1007/978-3-319-23240-9_19

    Book  Google Scholar 

  84. T. Murofushi, K. Uchino, and S. Asahina, “Conditions for Egoroff’s theorem in non-additive measure theory,” Fuzzy Sets Syst. 146, 135–146 (2004). https://doi.org/10.1016/j.fss.2003.09.006

    Article  MathSciNet  Google Scholar 

  85. F. T. Nguen, “On the possibility approach to information analysis,” in Fuzzy Sets and Possibility Theory, Ed. by R. Yager (Radio i Svyaz’, Moscow, 1986), pp. 285–292.

    Google Scholar 

  86. V. I. Nikolaev, Yu. P. Pyt’ev, V. S. Rusakov, A. G. Sveshnikov, and E. N. Terent’ev, “A new principle of organization for a "spectrometer-computer” complex in Mössbauer spectroscopy,” Sov. Phys. Dokl. 26, 950 (1981).

    Google Scholar 

  87. D. M. Novitsky, Yu. P. Pyt’ev, and B. I. Volkov, “On the measurement computer-aided systems based on the gauges of first and second orders,” Mat. Model. 18 (6), 15–28 (2006).

    MathSciNet  Google Scholar 

  88. S. A. Orlovskii, Decision-Making Problems at Fuzzy Original Information (Nauka, Moscow, 1981).

    Google Scholar 

  89. S. A. Orlovski, Calculus of Decomposable Properties, Fuzzy Sets, and Decisions (Allerton Press, New York, 1994).

    Google Scholar 

  90. S. S. Papilin and Yu. P. Pyt’ev, “Probability and possibility models of matrix games of two subjects,” Math. Models Comput. Simul. 3, 528–540 (2011). https://doi.org/10.1134/s2070048211040077

    Article  MathSciNet  Google Scholar 

  91. Fuzzy Sets in Control and Artificial Intelligence Models, Ed. by D. A. Pospelov (Nauka, Moscow, 1986).

    Google Scholar 

  92. W. K. Pratt, Digital Image Processing, 3rd ed. (John Wiley and Sons, New York, 2001).

    Google Scholar 

  93. Yu. V. Pyatkov, D. V. Kamanin, O. V. Falomkina, Yu. P. Pyt’ev, B. M. Herbst, and W. H. Trzaska, “Estimating the reliability of revealing the fine structure in mass-kinetic energy distributions of nuclear reaction products,” Pattern Recognit. Image Anal. 21, 82–87 (2011). https://doi.org/10.1134/s1054661811010111

    Article  Google Scholar 

  94. Yu. P. Pyt’ev, E. N. Terent’ev, and V. V. Tekin, “Comparative analysis of some resolving algorithms on computer,” Izv. Akad. Nauk SSSR. Tekh. Kibern. 4, 528–539 (1976).

    Google Scholar 

  95. Yu. P. Pyt’ev, S. S. Zadorozhnyi, and A. E. Luk’yanov, “On automation of comparative morphological analysis of electron-microscopic images,” Izv. Akad. Nauk SSSR. Ser. Fiz. 41, 2436–2441 (1977).

    Google Scholar 

  96. Yu. P. Pyt’ev and E. N. Terent’ev, “Numerical analysis of projection image processing methods,” Izv. Akad. Nauk SSSR. Tekh. Kibern., No. 1, 204–214 (1977).

  97. Yu. P. Pyt’ev, E. N. Terent’ev, and S. S. Zadorozhnyi, “Morphological analysis of integrated circuit images,” Vestn. Mosk. Univ. Ser. 3: Fiz., Astron., No. 6, 749–750 (1976).

  98. Yu. P. Pyt’ev, A. V. Kalinin, E. O. Loginov, and V. V. Smolovik, “Morphological analysis of color images in the Chebyshev and quadratic metrics,” Pattern Recognit. Image Anal. 8, 234–236 (1998).

    Google Scholar 

  99. Yu. P. Pyt’ev, A. V. Kalinin, E. O. Loginov, and V. V. Smolovik, “Comparison of black-and white and Lambertian morphologies in the problem of pattern recognition,” Pattern Recognit. Image Anal. 8, 239–241 (1998).

    Google Scholar 

  100. Yu. P. Pyt’ev and S. S. Zadorozhnyi, “Morphological method of adaptive correction of image sensor array elements,” Moscow Univ. Phys. Bull. 53 (5), 23–28 (1998).

    Google Scholar 

  101. Yu. P. Pyt’ev, A. V. Kalinin, E. O. Loginov, and V. V. Smolovik, “On the problem of object detection by black-and-white and color morphologies,” Pattern Recognit. Image Anal. 8, 532–536 (1998).

    Google Scholar 

  102. Yu. P. Pyt’ev, I. I. Falomkin, and A. I. Chulichkov, “Morphological compression of grayscale images of text,” Pattern Recognit. Image Anal. 16 (3), 523–528 (2006).

    Article  Google Scholar 

  103. Yu. V. Pyt’ev and G. S. Zhivotnikov, “On the methods of possibility theory for morphological image analysis,” Pattern Recognit. Image Anal. 14 (1), 60–71 (2004).

    Google Scholar 

  104. Yu. P. Pyt’ev and A. I. Chulichkov, Methods of Morphological Image Analysis (Fizmatlit, Moscow, 2010).

    Google Scholar 

  105. Yu. P. Pyt’ev and A. I. Chulichkov, “Estimating the parameters of images and signals by morphological analysis,” Meas. Tech. 59, 584–588 (2016). https://doi.org/10.1007/s11018-016-1012-3

    Article  Google Scholar 

  106. Yu. P. Pyt’ev, “Lie groups in recognition problems,” Vopr. Radioelektroniki, Ser. Obshchetekhnicheskaya, No. 8, 141–158 (1970).

  107. Yu. P. Pyt’ev, “Algorithm of signal preprocessing in recognition systems generalizing by similarity,” Kibernetika, No. 3, 23–31 (1971).

  108. Yu. P. Pyt’ev, “Parametric and group generalized sequences,” Izv. Akad. Nauk SSSR. Tekh. Kibern., No. 4, 157–163 (1971).

  109. Yu. P. Pyt’ev, “(G,G)-Invariant transformations and estimation of images,” Kibernetika, No. 6 (1973).

  110. Yu. P. Pyt’ev, “Signal preprocessor algorithm for recognition systems with similarity generalization,” Cybern. Syst. Anal., No. 7, 415–424 (1971). https://doi.org/10.1007/BF01070450

  111. Yu. P. Pyt’ev, “Projective analysis of transforms,” Cybern. Syst. Anal., No. 11, 488–498 (1975). https://doi.org/10.1007/BF01069477

  112. Yu. P. Pyt’ev, “Morphological concepts in problems of image analysis,” Sov. Phys. Dokl. 20, 646 (1976).

    Google Scholar 

  113. Yu. P. Pyt’ev, “Morphological analysis of images,” Sov. Phys., Dokl. 28, 308–310 (1983).

    Google Scholar 

  114. Yu. P. Pyt’ev, “Problems of morphological image analysis,” in Mathematical Methods for Studying Earth’s Mineral Resources from Space, Ed. by V. G. Zolotukhin (Nauka, Moscow, 1984), pp. 41–82.

    Google Scholar 

  115. Yu. P. Pyt’ev, “Morphological image analysis,” Pattern Recognit. Image Anal. 3, 19–28 (1993).

    Google Scholar 

  116. Yu. P. Pyt’ev, “The morphology of color (multispectral) images,” Pattern Recognit. Image Anal. 7, 467–473 (1997).

    Google Scholar 

  117. Yu. P. Pyt’ev, “Methods for morphological analysis of color images,” Pattern Recognit. Image Anal. 8, 517–531 (1998).

    Google Scholar 

  118. Yu. P. Pyt’ev, “Oblique projectors and relative forms in image morphology,” Comput. Math. Math. Phys. 53, 1916–1937 (2013). https://doi.org/10.1134/S0965542513120105

    Article  MathSciNet  Google Scholar 

  119. Yu. P. Pyt’ev, Probability, Possibility, and Subjective Modeling in Scientific Research (Fizmatlit, Moscow, 2018).

    Google Scholar 

  120. Yu. P. Pyt’ev, “Oblique projectors, relative forms, and subjective models in image morphology,” in Intellectualization of Information Processing: 10th Int. Conf., Crete Island, Greece (Torus Press, Moscow, 2020), p. 153.

  121. Yu. P. Pyt’ev, Mathematical Methods of Experiment Interpretation (Vysshaya Shkola, Moscow, 1989).

    Google Scholar 

  122. Yu. P. Pyt’ev, Methods for Analysis and Interpretation of Experiment (Izd-vo Mosk. Univ., Moscow, 1990).

    Google Scholar 

  123. Yu. P. Pyt’ev, Methods of Mathematical Modeling of Measurement-Computational Systems, 3rd ed. (Fizmatlit, Moscow, 2012).

    Google Scholar 

  124. Yu. P. Pyt’ev, “Subjective models, oblique projectors, and optimal decisions in image morphology,” Pattern Recognit. Image Anal 27, 213–233 (2017). https://doi.org/10.1134/S1054661817020080

    Article  Google Scholar 

  125. Yu. P. Pyt’ev, “Measurement-computational trancducer as a universal measurement tool,” Mir Izmerenii, No. 6, 3–8 (2013).

  126. Yu. P. Pyt’ev, K. S. Sobolev, A. I. Chulichkov, and V. A. Antonjuk, “On the problem of superresolution of blurred images,” Pattern Recognit. Image Anal. 14, 50–59 (2004).

    Google Scholar 

  127. Yu. P. Pyt’ev, “Reduction problems in experimental investigations,” Math. USSR Sb. 48, 237–272 (1984). https://doi.org/10.1070/SM1984v048n01ABEH002673

    Article  Google Scholar 

  128. Yu. P. Pyt’ev, Possibility As an Alternative of Probability, 2nd ed. (Fizmatlit, Moscow, 2016).

    Google Scholar 

  129. Yu. P. Pyt’ev, “Methods of the theory of possibilities in the problems of optimal estimation and decision making, Part 1,” Pattern Recognit. Image Anal. 7, 338–346 (1997).

    Google Scholar 

  130. Yu. P. Pyt’ev, Possibility: Elements of the Theory and Applications (Editorial URSS, Moscow, 2000).

    Google Scholar 

  131. Yu. P. Pyt’ev, “Foundations of possibility theory. Methods of optimal estimation and decision making. 1. Measure of possibility: Definition and properties,” Moscow Univ. Phys. Bull. 52 (3), 1–7 (1997).

    Google Scholar 

  132. Yu. P. Pyt’ev, “Foundations of possibility theory. Methods of optimal estimation and decision making. 2. Measure of necessity: Definition, properties, integration over possibility and necessity,” Moscow Univ. Phys. Bull. 52 (4), 1–7 (1997).

    Google Scholar 

  133. Yu. P. Pyt’ev, “Methods of the theory of possibilities in the problems of optimal estimation and decision making. Part 3,” Pattern Recognit. Image Anal. 9, 416–426 (1999).

    Google Scholar 

  134. Yu. P. Pyt’ev, “On stochastic models of possibility,” Intellektual’nye Sist. 6 (1–4), 25–62 (2001).

    Google Scholar 

  135. Yu. P. Pyt’ev, “Foundations of possibility theory. Methods of optimal estimation and decision making. Estimation of fuzzy elements and their distribution parameters,” Moscow Univ. Phys. Bull. 53 (6), 1–8 (1998).

    Google Scholar 

  136. Yu. P. Pyt’ev, “Possibility-theoretic method of measurement reduction,” Moscow Univ. Phys. Bull. 54 (1), 1–7 (1999).

    Google Scholar 

  137. Yu. P. Pyt’ev, “On meaningful interpretation of possibility and necessity,” Moscow Univ. Phys. Bull. 54 (5), 1–7 (1999).

    Google Scholar 

  138. Yu. P. Pyt’ev, “Optimal decisions in the theory of possibilities,” Moscow Univ. Phys. Bull. 54 (6), 1–6 (1999).

    Google Scholar 

  139. Yu. P. Pyt’ev and I. V. Mazaeva, “Possibility theoretical prediction of mean monthly temperature,” Moscow Univ. Phys. Bull. 57 (5), 27–31 (2002).

    Google Scholar 

  140. Yu. P. Pyt’ev, V. A. Gazaryan, and P. B. Rosnitskiy, “A comparative analysis of the efficiency of probabilistic and possibilistic algorithms for medical diagnostics,” Moscow Univ. Phys. Bull. 69, 210–217 (2014). https://doi.org/10.3103/S0027134914030138

    Article  Google Scholar 

  141. Yu. P. Pyt’ev, “Mathematical modeling of randomness and fuzziness phenomena in scientific studies. II. Applications,” Moscow Univ. Phys. Bull. 72 (2), 113–127 (2017).

    Article  Google Scholar 

  142. Yu. P. Pyt’ev, “Modeling of subjective judgments made by a researcher-modeler about the model of the research object,” Math. Models Comput. Simul. 5, 538–557 (2013). https://doi.org/10.1134/S2070048213060094

    Article  MathSciNet  Google Scholar 

  143. Yu. P. Pyt’ev, O. V. Falomkina, S. A. Shishkin, and A. I. Chulichkov, “Mathematical formalism of subjective modeling,” Mash. Obuchenie Anal. Dannykh 4 (2), 108–121 (2018).

    Google Scholar 

  144. Yu. P. Pyt’ev, O. Falomkina, and S. Shishkin, “Subjective restoration of mathematical models for a research object, its measurements, and measurement-data interpretation,” Pattern Recognit. Image Anal. 29, 577–591 (2019). https://doi.org/10.1134/S1054661819040138

    Article  Google Scholar 

  145. Yu. P. Pyt’ev, O. V. Falomkina, and A. I. Chulichkov, “Subjective restoration of omissions in the measurement data of an object of study and its mathematical model,” Pattern Recognit. Image Anal. 32, 743–754 (2022). https://doi.org/10.1134/S1054661822040101

    Article  Google Scholar 

  146. Yu. P. Pyt’ev, “Mathematical methods of subjective modeling in scientific research: I. The mathematical and empirical basis,” Moscow Univ. Phys. Bull. 73, 1–16 (2018). https://doi.org/10.3103/S0027134918010125

    Article  Google Scholar 

  147. Yu. P. Pyt’ev, “Mathematical methods of subjective modeling in scientific research: 2. Applications,” Moscow Univ. Phys. Bull. 73, 125–140 (2018). https://doi.org/10.3103/S0027134918020145

    Article  Google Scholar 

  148. Yu. P. Pyt’ev, “Pseudoinverse operators. Properties and applications,” Math. USSR Sb. 46, 17–50 (1983). https://doi.org/10.1070/SM1983v046n01ABEH002743

    Article  Google Scholar 

  149. Yu. P. Pyt’ev and O. V. Falomkina (Zhuchko), “The methods of the possibility theory in the problems of optimal estimation and decision making: VII. Reconstruction of functional dependences from experimental data,” Pattern Recognit. Image Anal. 12, 116–129 (2002).

    Google Scholar 

  150. Yu. P. Pyt’ev, “Stochastic models of possibility,” Pattern Recognit. Image Anal. 12, 376–396 (2002).

    Google Scholar 

  151. Yu. P. Pyt’ev, “Foundations of possibility theory. Methods of optimal estimation and decision making: 5. Fuzzy elements, independence, and conditional distributions,” Moscow Univ. Phys. Bull., No. 2, 1–8 (1998).

  152. Yu. P. Pyt’ev, “Image reconstruction,” Sov. Phys., Dokl. 24, 147–150 (1979).

    Google Scholar 

  153. Yu. P. Pyt’ev, “Image-quality improvement,” Sov. Phys., Dokl. 24, 154–156 (1979).

    Google Scholar 

  154. Yu. P. Pyt’ev, “Suppression of false signals in the problem of raising resolution,” Sov. Phys., Dokl. 25, 898–900 (1980).

    Google Scholar 

  155. Yu. P. Pyt’ev, “Measuring Computational complex. Models of the linear measuring scheme,” Moscow Univ. Phys. Bull. 38 (4), 26–30 (1983).

    Google Scholar 

  156. Yu. P. Pyt’ev, “Measuring-computational complex. Problems of reduction of the results of measurements,” Moscow Univ. Phys. Bull. 38 (5), 23–27 (1983).

    Google Scholar 

  157. Yu. P. Pyt’ev and A. I. Chulichkov, “Recursive methods of measurement reduction,” Mat. Model. 1 (8), 22–44 (1989).

    MathSciNet  Google Scholar 

  158. Yu. P. Pyt’ev, “Methods of reduction of measurements in hilbert spaces,” Math. USSR-Sb. 54, 525–549 (1986). https://doi.org/10.1070/SM1986v054n02ABEH002983

    Article  Google Scholar 

  159. Yu. P. Pyt’ev, A. I. Chulichkov, and N. M. Chulichkova, “Reduction of images distorted by a turbulent atmosphere,” Moscow Univ. Phys. Bull. 42 (3), 22–27 (1987).

    Google Scholar 

  160. Yu. P. Pyt’ev, G. V. Sukhorukova, and A. I. Chulichkov, “The remote sensing problems: Mathematical modelling, analysis and interpreting of the results,” Mat. Model. 6 (11), 113–127 (1994).

    MathSciNet  Google Scholar 

  161. Yu. P. Pyt’ev, V. A. Gazaryan, G. V. Sukhorukova, and T. V. Matveeva, “Interval estimation of measurement model parameters in remote sounding problems,” Moscow Univ. Phys. Bull. 48 (2), 1–6 (1993).

    Google Scholar 

  162. Yu. P. Pyt’ev and P. V. Golubtsov, “The distribution of the time resource of measurements in an experiment,” Moscow Univ. Phys. Bull. 38 (5), 57–62 (1983).

    Google Scholar 

  163. Yu. P. Pyt’ev, “Accuracy and reliability of experimental interpretation,” Moscow Univ. Phys. Bull. 41 (3), 14–19 (1986).

    Google Scholar 

  164. Yu. P. Pyt’ev, “The precision and reliability of interpreting a series of measurements,” Moscow Univ. Phys. Bull. 41 (5), 1–5 (1986).

    Google Scholar 

  165. Yu. P. Pyt’ev, “On the precision and reliability of the interpretation of indirect measurements,” Dokl. Math. 36, 96–100 (1987).

    Google Scholar 

  166. Yu. P. Pyt’ev and M. L. Serdobol’skaya, “Reduction problems in the case of an unknown correlation operator,” Moscow Univ. Phys. Bull. 43 (6), 87–89 (1988).

    MathSciNet  Google Scholar 

  167. Yu. P. Pyt’ev, “Reliability of experiment interpretation based on an approximate model,” Mat. Model. 1 (2), 49–64 (1989).

    MathSciNet  Google Scholar 

  168. Yu. P. Pyt’ev and M. L. Serdobol’skaya, “A maximum-reliability method in model choice,” Moscow Univ. Phys. Bull. 43 (5), 19–24 (1988).

    MathSciNet  Google Scholar 

  169. Yu. P. Pyt’ev, “Reliability of measurement reduction,” Dokl. Math. 34, 1056–1058 (1989).

    MathSciNet  Google Scholar 

  170. Yu. P. Pyt’ev, “Nonlinear reduction of measurement,” Mat. Model. 1 (5), 44–59 (1989).

    MathSciNet  Google Scholar 

  171. Yu. P. Pyt’ev, “On the theory of measuring-computational systems of minimax type,” Mat. Model. 3 (10), 65–79 (1991).

    MathSciNet  Google Scholar 

  172. Yu. P. Pyt’ev, “For theory of nonlinear measure computer systems,” Mat. Model. 4 (2), 76–94 (1992).

    MathSciNet  Google Scholar 

  173. A. Yu. Pyt’ev and Yu. P. Pyt’ev, “The effective dimension of a set of measurement data,” Comput. Math. Math. Phys. 38 (4), 657–671 (1998).

    MathSciNet  Google Scholar 

  174. Yu. P. Pyt’ev and A. I. Chulichkov, “Measurement computer systems: Modeling, reliability, algorithms,” Pattern Recognit. Image Anal. 1, 212–223 (1991).

  175. Yu. P. Pyt’ev, “Measurement computer systems of superhigh resolution,” Pattern Recognit. Image Anal. 1, 54–76 (1991).

    Google Scholar 

  176. Yu. P. Pyt’ev, “On meaningful interpretation of possibility and necessity,” Moscow Univ. Phys. Bull. 54 (5), 1–6 (1999).

    Google Scholar 

  177. Yu. P. Pyt’ev, “Optimal decisions in the theory of possibilities,” Moscow Univ. Phys. Bull. 54 (6), 1–5 (1999).

    Google Scholar 

  178. Yu. P. Pyt’ev, “Foundations of possibility theory. Methods of optimal estimation and decision making. 4. Maximal extension of possibility,” Moscow Univ. Phys. Bull. 53 (1), 3–6 (1998).

    MathSciNet  Google Scholar 

  179. Yu. P. Pyt’ev, “Fuzzy computer-aided measuring systems,” Pattern Recognit. Image Anal. Syst. 3, 150–157 (1993).

    Google Scholar 

  180. Yu. P. Pyt’ev, “Methods of the theory of possibilities in the problems of optimal estimation and decision making: II. Independence and conditional possibility and necessity,” Pattern Recognit. Image Anal. 8, 1–7 (1998).

    Google Scholar 

  181. Yu. P. Pyt’ev, “Uncertain fuzzy sets: Theory and applications,” Pattern Recognit. Image Anal. 5, 13–34 (1995).

    Google Scholar 

  182. Yu. P. Pyt’ev, “Mathematical methods and algorithms of empirical reconstruction of stochastic and fuzzy models,” Intellektual’nye Sist. 11 (1–4), 277–327 (2007).

    MathSciNet  Google Scholar 

  183. Yu. P. Pyt’ev, “Uncertain fuzzy models and their applications,” Intellektual’nye Sist. 8 (1–4), 147–310 (2004).

    Google Scholar 

  184. Yu. P. Pyt’ev, “Empirical restoration of the measures of possibility and possibility likelihood in models of expert decisions,” Autom. Remote Control 71, 486–500 (2010). https://doi.org/10.1134/S0005117910030100

    Article  MathSciNet  Google Scholar 

  185. Yu. P. Pyt’ev and G. S. Zhivotnikov, “Theoretical-probabilistic and theoretical-possibilistic recognition models: Comparative analysis,” Intellektual’nye Sist. 6 (1–4), 63–90 (2002).

    Google Scholar 

  186. Yu. P. Pyt’ev and I. A. Shishmarev, Probability Theory, Mathematical Statistics, and Elements of the Possibility Theory for Physicists (Izd-vo Mosk. Univ., Moscow, 2010).

    Google Scholar 

  187. Yu. P. Pyt’ev, “The methods of the possibility theory in the problems of optimal estimation and decision making: IV. The Methods of measurement reduction. The principle of relativity in the possibility theory,” Pattern Recognit. Image Anal. 10, 43–52 (2000).

    Google Scholar 

  188. Yu. P. Pyt’ev, “The methods of the possibility theory in the problems of optimal estimation and decision making: V. The possibility-theory methods of measurement. Reduction of measurement of fuzzy sets,” Pattern Recognit. Image Anal. 10, 447–459 (2000).

    Google Scholar 

  189. Yu. P. Pyt’ev, “The methods of the possibility theory in the problems of optimal estimation and decision Making: VI. Fussy sets. Independence. P-Complection. Methods for estimation of fuzzy sets and their parameters,” Pattern Recognit. Image Anal. 12, 107–115 (2002).

    Google Scholar 

  190. Yu. P. Pyt’ev, “Uncertain fuzzy models and their applications: 1. Uncertain, fuzzy and uncertain fuzzy elements and sets,” Pattern Recognit. Image Anal. 14, 541–570 (2004).

    Google Scholar 

  191. C. R. Rao, Shalabh, H. Toutenburg, and C. Heumann, in Linear Models and Generalizations: Least Squares and Alternatives, 3rd ed., Springer Series in Statistics (Springer-Verlag, Berlin, 2008).

  192. L. J. Savage, The Foundations of Statistics (Dover, New York, 1972).

    Google Scholar 

  193. J. Serra, Image Analysis and Mathematical Morphology (Academic, New York, 1982).

    Google Scholar 

  194. G. Shafer, A Mathematical Theory of Evidence (Princeton Univ. Press, 1976). https://doi.org/10.1515/9780691214696

    Book  Google Scholar 

  195. R. Slowinski, Fuzzy Sets and Possibility Theory, Operations Research and Statistics (Kluwer Academic, 1998).

    Google Scholar 

  196. Methods of Computer Image Processing, Ed. by V. A. Soifer (Fizmatlit, Moscow, 2003).

    Google Scholar 

  197. M. Sugeno, “Theory of fuzzy integral and its applications,” in PhD Thesis (1974).

  198. M. Sugeno, “Fuzzy decision-making problems,” Trans. Soc. Instrum. Control Eng. 11, 709–714 (1975). https://doi.org/10.9746/sicetr1965.11.709

    Article  Google Scholar 

  199. M. Sugeno, “Fuzzy measure and fuzzy integral,” Trans. Soc. Instrum. Control Eng. 8, 218–226 (1972). https://doi.org/10.9746/sicetr1965.8.218

    Article  Google Scholar 

  200. M. Sugeno, “Inverse operation of fuzzy integrals and conditional fuzzy measures,” Trans. Soc. Instrum. Control Eng. 11, 32–37 (1975). https://doi.org/10.9746/sicetr1965.11.32

    Article  Google Scholar 

  201. V. Yu. Terebizh, “Image restoration under minimal a priori information,” Phys.-Usp. 38, 137–167 (1995). https://doi.org/10.1070/PU1995v038n02ABEH000068

    Article  Google Scholar 

  202. S. Theodoridis and K. Koutroumbas, Pattern Recognition (Academic, 1999). https://doi.org/10.1016/B978-0-12-369531-4.X5000-8

  203. A. N. Tikhonov and V. Ya. Arsenin, Methods of Solution of Ill-Posed Problems (Nauka, Moscow, 1979).

    Google Scholar 

  204. J. T. Tou and R. C. Gonzalez, Pattern Recognition Principles, Applied Mathematics and Computation (Addison-Wesley, Reading, Mass., 1974).

  205. A. L. Tulup’ev, S. I. Nikolenko, and A. V. Sirotkin, Bayesian Nets: Logico-Probabilistic Approach (Nauka, St. Petersburg, 2006).

    Google Scholar 

  206. E. R. Urbach, J. B. T. M. Roerdink, and M. H. F. Wilkinson, “Connected shape-size pattern spectra for rotation and scale-invariant classification of gray-scale images,” IEEE Trans. Pattern Anal. Mach. Intell. 29, 272–285 (2007). https://doi.org/10.1109/tpami.2007.28

    Article  PubMed  Google Scholar 

  207. V. N. Vapnik, Reconstruction of Dependences by Empirical Data (Nauka, Moscow, 1979).

    Google Scholar 

  208. V. N. Vapnik and A. Ya. Chervonenkis, Theory of Pattern Recognition: Statistical Learning Problems (Nauka, Moscow, 1974).

    Google Scholar 

  209. V. N. Vapnik, T. G. Glazkova, V. A. Koshcheev, A. I. Mikhal’skii, and A. Ya. Chervonenkis, Algorithms and Programs for Reconstruction of Dependences (Nauka, Moscow, 1984).

    Google Scholar 

  210. V. V. Varlamov, B. S. Ishkhanov, Yu. P. Pyt’ev, A. P. Chernyaev, and D. V. Yudin, “Reduction processing and photonuclear reaction cross section estimation,” Moscow University Physics Bulletin 39 (4), 62–69 (1984).

  211. J. Vejnarova, “Conditional independence relations in possibility theory,” Int. J. Uncertainty, Fuzziness Knowl.-Based Syst. 8, 253–269 (2000). https://doi.org/10.1142/s0218488500000186

    Article  MathSciNet  Google Scholar 

  212. Yu. V. Vizil’ter, S. Yu. Zheltov, A. V. Bondarenko, et al., Image Processing and Analysis in Machine Vision Problems (Fizmatkniga, Moscow, 2010).

    Google Scholar 

  213. Yu. V. Vizil’ter, S. Yu. Zheltov, and V. I. Busurin, Modern Morphological Analysis and Its Application in Aviation Technical Vision Systems (Izd-vo Mosk. Inst., Moscow, 2020).

    Google Scholar 

  214. B. I. Volkov and Yu. P. Pyt’ev, “Measuring-computing transducers based on sensors with lumped parameters,” Comput. Math. Math. Phys. 43, 1177–1191 (2003).

    MathSciNet  Google Scholar 

  215. T. Watanabe and T. Tanaka, “On Lusin’s theorem for non-additive measures that take values in an ordered topological vector space,” Fuzzy Sets Syst. 244, 41–50 (2014). https://doi.org/10.1016/j.fss.2013.07.021

    Article  MathSciNet  Google Scholar 

  216. O. Wolkenhauer, Possibility Theory with Applications to Data Analysis (Research Studies Press, 1998).

    Google Scholar 

  217. R. R. Yager and N. Alajlan, “Dempster–Shafer belief structures for decision making under uncertainty,” Knowl.-Based Syst. 80, 58–66 (2015). https://doi.org/10.1016/j.knosys.2014.12.031

    Article  Google Scholar 

  218. R. R. Yager, Fuzzy Sets and Possibility Theory (Pergamon Press, New York, 1982).

    Google Scholar 

  219. R. R. Yager, “Conditional approach to possibility-probability fusion,” IEEE Trans. Fuzzy Syst. 20, 46–56 (2012). https://doi.org/10.1109/tfuzz.2011.2165847

    Article  Google Scholar 

  220. R. R. Yager, “Entailment principle for measure-based uncertainty,” IEEE Trans. Fuzzy Syst. 20, 526–535 (2012). https://doi.org/10.1109/tfuzz.2011.2178029

    Article  Google Scholar 

  221. L. P. Yaroslavskii, Introduction to Digital Image Processing (Sovetskoe Radio, Moscow, 1979).

    Google Scholar 

  222. L. P. Yaroslavskii, Digital Signal Processing in Optics and Holography (Sovetskoe Radio, Moscow, 1987).

    Google Scholar 

  223. B. Yuan and A. I. Chulichkov, “On the estimation of the maximum possibility for the parameters of a measurement model,” Moscow Univ. Phys. Bull. 70, 353–361 (2015). https://doi.org/10.3103/s002713491505015x

    Article  Google Scholar 

  224. L. A. Zadeh, “Fuzzy sets,” Inf. Control 8, 338–353 (1965). https://doi.org/10.1016/s0019-9958(65)90241-x

    Article  Google Scholar 

  225. L. A. Zadeh, “Fuzzy sets as a basis for a theory of possibility,” Fuzzy Sets Syst. 1, 3–28 (1978). https://doi.org/10.1016/0165-0114(78)90029-5

    Article  MathSciNet  Google Scholar 

  226. S. S. Zadorozhnyi, Yu. P. Pyt’ev, and A. I. Chulichkov, “Morphological methods in automatic recognition of cars’ license plates from their video-images,” Pattern Recognit. Image Anal. 10, 288–292 (2000).

    Google Scholar 

  227. S. S. Zadorozhnyi, A. A. Kozlov, and Yu. P. Pyt’ev, “Increasing the resolution of diffusion-type devices,” Moscow Univ. Phys. Bull. 41 (4), 17–21 (1986).

    Google Scholar 

  228. Yu. I. Zhuravlev and I. B. Gurevich, Pattern Recognition and Image Recognition, Vol. 2: Models and Methods: Reference Book, Ed. by D. A. Pospelov (Radio i Svyaz’, Moscow, 1990).

  229. Yu. I. Zhuravlev, V. V. Ryazanov, and O. V. Sen’ko, Recognition: Mathematical Methods. Program Systems. Practical Application (Fazis, Moscow, 2005).

    Google Scholar 

  230. Yu. I. Zhuravlev, “On the algebraic approach to solving recognition and classification problems,” Probl. Kibernetiki 33, 5–68 (1978).

    Google Scholar 

  231. A. V. Zubyuk and V. G. Baikov, “Idempotent neural network as an implementation of the morphological method of object recognition by images,” in Technical Vision in Control Systems (Moscow, 2018), pp. 53–54.

  232. A. V. Zubyuk and V. G. Baykov, “Neural network implementation of the morphological method for recognizing objects in images,” in Proc. 25th Conf.: Mathematics. Computing. Education (2018), p. 135.

  233. A. V. Zubyuk, “A possibility model in the problems of morphological image analysis,” Moscow Univ. Phys. Bull. 67, 512–519 (2012). https://doi.org/10.3103/s002713491206015x

    Article  MathSciNet  Google Scholar 

  234. A. V. Zubyuk, “Image classification in fuzzy morphology: An algorithm for empirically reconstructing the decision rule,” Moscow Univ. Phys. Bull. 68, 6–12 (2013). https://doi.org/10.3103/s0027134913010189

    Article  Google Scholar 

  235. A. V. Zubyuk and V. V. Asharin, “Using qualitative subjective information in the form of soft inequalities to solve some ill-posed inverse problems,” in Abstracts of the Fifteenth Int. Conf. on Fuzzy Set Theory and Applications (Printing House of the Armed Forces Academy of General M.R. Štefánik Liptovský, 2020), p. 97.

  236. A. V. Zubyuk, “A new approach to specificity in possibility theory: Decision-making point of view,” Fuzzy Sets Syst. 364, 76–95 (2019). https://doi.org/10.1016/j.fss.2018.06.017

    Article  MathSciNet  Google Scholar 

  237. A. V. Zubyuk, “The decision-making driven approach to specificity of possibilities in the Savage-style setting,” in 38th Linz Seminar on Fuzzy Set Theory Linz-2019: Set Functions in Games and Decisions: Abstracts (Johannes Kepler Univ. Linz, Linz, Austria, 2019), pp. 100–103.

Download references

Funding

This study was supported by grant no. 19-29-09044 of the Science Foundation of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. P. Pyt’ev, A. I. Chulichkov, O. V. Falomkina or D. A. Balakin.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Yuri Petrovich Pyt’ev (born in 1935). Graduated from the Faculty of Physics at Lomonosov Moscow State University in 1959. He received his Candidate’s degree in theoretical and mathematical physics from Lomonosov Moscow State University in 1963 and Doctoral degree in 1976. He was head of the Mathematical Modeling and Computer Science Department (earlier, Computer Methods in Physics) at the Faculty of Physics, Lomonosov Moscow State University, from 1995 to 2018. He has been a Professor of the Mathematical Modeling and Computer Science Department since 2018. Scientific interests: fuzzy and uncertain fuzzy mathematics, theory of possibilities, subjective modeling, mathematical modeling, image processing, pattern recognition and image analysis. He is the author of more than 400 papers and 36 books.

Alexey Ivanovich Chulichkov (born in 1954). Graduated from the Faculty of Physics at Lomonosov Moscow State University in 1978. He received his Candidate’s degree in physics and mathematics from Lomonosov Moscow State University in 1983 and Doctoral degree in 1993. He was a Professor of the Mathematical Modeling and Computer Science Department (earlier, Computer Methods in Physics) at the Faculty of Physics, Lomonosov Moscow State University, from 1994 to 2019. He has been head of the Mathematical Modeling and Computer Science Department (earlier, Computer Methods in Physics) since 2020. Scientific interests: morphological methods of image analysis, fuzzy and uncertain fuzzy mathematics, and analysis and interpretation of experimental data. He is the author of more 200 papers and 14 books.

Olesya Vladimirovna Falomkina (born in 1979). Graduated from the Faculty of Physics at Lomonosov Moscow State University in 2002. She received her Candidate’s degree in mathematical modeling, numerical methods, and software development from Lomonosov Moscow State University in 2006. She has been a senior researcher of the Mathematical Modeling and Computer Science Department (earlier, Computer Methods in Physics) at the Faculty of Physics, Lomonosov Moscow State University, since 2005. Scientific interests: fuzzy and uncertain fuzzy mathematics, theory of possibilities, mathematical modeling, image processing, pattern recognition, and image analysis. She is the author of more than 35 papers and 1 book.

Dmitriy Aleksandrovich Balakin (born in 1991). Graduated from the Faculty of Physics of Lomonosov Moscow State University in 2014. He has worked as a junior researcher at the Mathematical Modeling and Computer Science Department (formerly, the Department of Computer Methods in Physics) of the Faculty of Physics of Lomonosov Moscow State University since 2019. Scientific interests: computer-aided measuring systems, subjective modeling, image and signal processing, possibility theory, and image analysis. Author of 30 articles.

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pyt’ev, Y.P., Chulichkov, A.I., Falomkina, O.V. et al. Data Analysis and Interpretation: Methods of Computer-Aided Measuring Transducer Theory, Morphological Analysis, Possibility Theory, and Subjective Mathematical Modeling. Pattern Recognit. Image Anal. 33, 1515–1563 (2023). https://doi.org/10.1134/S1054661823040351

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054661823040351

Keywords:

Navigation