Skip to main content
Log in

Gait recognition based on curvelet transform and PCANet

  • Applied Problems
  • Published:
Pattern Recognition and Image Analysis Aims and scope Submit manuscript

Abstract

Conventional gait recognition schemes has poor recognition accuracies in presence of covariates. It is mainly due to ineffective and inefficient representation and discriminative feature extraction schemes. The paper presents new technique to extract discriminative features from masked gait energy image based on curvelet transform and PCANet. The binary gait silhouette video sequence obtained from pre-processing of video sequence is converted in to masked gait energy image and then direction and edge representation ability of fast discrete curvelet transform is employed. Nonlinear and non invertible, image space to feature space mapping scheme of PCANet is used to extract discriminative robust features. The suitability and effectiveness of newly proposed scheme is demonstrated by experimentation on standard publicly available benchmark USF HumanID database.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Han and B. Bhanu, “Individual recognition using gait energy image,” IEEE Trans. Pattern Anal. Mach. Intellig. 28, 316 (2006).

    Article  Google Scholar 

  2. T. H. W. N. K. Cheung, and J. N. Liu, “Gait fow image:a silhouette-based gait representation for human identification,” Pattern Recogn. 44, 973 (2011).

    Article  MATH  Google Scholar 

  3. X. Huang and N. V. Boulgouris, “Gait recognition with shifted energy image and structural feature extraction,” IEEE Trans. Image Processing 21, 2256 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  4. Y. Liu, R. Collins, and S. Lee, “Shape variation-based frieze pattern for robust gait recognition,” in Proc. CVPR (Minneapolis, 2007), pp. 1–8.

    Google Scholar 

  5. K. Bashir, T. Xiang, and S. Gong, “Gait recognition using gait entropy image,” in Proc. Int. Conf. on Crime Detection and Prevention (London, 2009).

    Google Scholar 

  6. Y. Makihara, R. Sagawa, Y. Mukaigawa, T. Echigo, and Y. Yagi, “Gait recognition using a view transformation model in the frequency domain,” in Proc. Computer Vision–ECCV 2006 (Springer, 2006), pp. 151–163.

    Google Scholar 

  7. D. Xu, Y. Huang, Z. Zeng, and X. Xu, “Human gait recognition using patch distribution feature and locality-constrained group sparse representation,” IEEE Trans. Image Processing 21, 316 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  8. D. Xu, S. Yan, D. Tao, L. Zhang, X. Li, and H.-J. Zhang, “Human gait recognition with matrix representation,” IEEE Trans. Circuits Syst.Video Technol. 16, 896 (2006).

    Article  Google Scholar 

  9. H. Lu, K. N. Plataniotis, and A. N. Venetsanopoulos, “Mpca: multilinear principal component analysis of tensor objects,” IEEE Trans. Neural Networks 19, 18 (2008).

    Article  Google Scholar 

  10. H. Lu, K. N. Plataniotis, and A. N. Venetsanopoulos, “Uncorrelated multilinear principal component analysis for unsupervised multilinear subspace learning,” IEEE Trans. Neural Networks 20, 1820 (2009).

    Article  Google Scholar 

  11. H. Lu, K. N. Plataniotis, and A. N. Venetsanopoulos, “Uncorrelated multilinear discriminant analysis with regularization and aggregation for tensor object recognition,” IEEE Trans. Neural Networks 20, 103 (2009).

    Article  Google Scholar 

  12. R. Xu and Y.-W. Chen, “Generalized n-dimensional principal component analysis (gnd-pca) and its application on construction of statistical appearance models for medical volumes with fewer samples,” Neurocomputing 72, 2276 (2009).

    Article  Google Scholar 

  13. S. Yan, D. Xu, Q. Yang, L. Zhang, X. Tang, and H.-J. Zhang, “Discriminant analysis with tensor representation,” in Proc. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition (San Diego, 2005), pp. 526–532.

    Google Scholar 

  14. J. Ye, “Generalized low rank approximations of matrices,” Mach. Learning 61, 167 (2005).

    Article  MATH  Google Scholar 

  15. D. Tao, X. Li, X. Wu, and S. Maybank, “General tensor discriminant analysis and gabor features for gait recognition,” IEEE Trans. Pattern Anal. Mach. Intellig. 29, 1700 (2007).

    Article  Google Scholar 

  16. D. Xu, S. Yan, L. Zhang, H.-J. Zhang, Z. Liu, and H.-Y. Shum, “Concurrent subspaces analysis,” in Proc. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition (San Diego, 2005), Vol. 2, pp. 203–208.

    Google Scholar 

  17. D. Tao, X. Li, X. Wu, and S. Maybank, “Tensor rank one discriminant analysis. A convergent method for discriminative multilinear subspace selection,” Neurocomputing 71, 1866 (2008).

    Article  Google Scholar 

  18. J. Sun, D. Tao, S. Papadimitriou, P. S. Yu, and C. Faloutsos, “Incremental tensor analysis: theory and applications,” ACM Trans. Knowledge Discovery Data 2, 11 (2008).

    Google Scholar 

  19. F. Nie, S. Xiang, Y. Song, and C. Zhang, “Extracting the optimal dimensionality for local tensor discriminant analysis,” Pattern Recogn. 42, 105 (2009).

    Article  MATH  Google Scholar 

  20. Z. Lai, Y. Xu, Q. Chen, J. Yang, and D. Zhang, “Multilinear sparse principal component analysis,” IEEE Trans. Neural Networks Learning Syst. 25, 1942 (2014).

    Article  Google Scholar 

  21. Z. Lai, Y. Xu, J. Yang, J. Tang, and D. Zhang, “Sparse tensor discriminant analysis,” IEEE Trans. Image Processing 22, 3904 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  22. D. Xu, S. Yan, D. Tao, S. Lin, and H.-J. Zhang, “Marginal fisher analysis and its variants for human gait recognition and content-based image retrieval,” IEEE Trans. Image Processing 16, 2811 (2007).

    Article  MathSciNet  Google Scholar 

  23. R.-X. Hu, W. Jia, D.-S. Huang, and Y.-K. Lei, “Maximum margin criterion with tensor representation,” Neurocomputing 73, 1541 (2010).

    Article  Google Scholar 

  24. Z. Lai, Y. Xu, Z. Jin, and D. Zhang, “Human gait recognition via sparse discriminant projection learning,” IEEE Trans. Circuits Syst. Video Technol. 24, 1651 (2014).

    Article  Google Scholar 

  25. Y. LeCun and Y. Bengio, “Convolutional networks for images, speech, and time series,” Handbook Brain Theory Neural Networks 3361, 1995 (1995).

    Google Scholar 

  26. K. Kavukcuoglu, P. Sermanet, Y.-L. Boureau, K. Gregor, M. Mathieu, and Y. L. Cun, “Learning convolutional feature hierarchies for visual recognition,” in Proc. Conf. Advances in Neural Information Processing Systems (Vancouver, 2010), pp. 1090–1098.

    Google Scholar 

  27. J. Bruna and S. Mallat, “Invariant scattering convolution networks,” IEEE Trans. Pattern Anal. Mach. Intellig. 35, 1872 (2013).

    Article  Google Scholar 

  28. L. Sifre and S. Mallat, “Rotation, scaling and deformation invariant scattering for texture discrimination,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition (Portland, 2013), pp. 1233–1240.

    Google Scholar 

  29. T. Chan, K. Jia, S. Gao, J. Lu, Z. Zeng, and Y. Ma, “Pcanet: a simple deep learning baseline for image classification,” IEEE Trans. Image Processing 24, 5017 (2015).

    Article  MathSciNet  Google Scholar 

  30. Y. Bengio, A. Courville, and P. Vincent, “Representation learning: a review and new perspectives,” IEEE Trans. Pattern Anal. Mach. Intellig. 35, 1798 (2013).

    Article  Google Scholar 

  31. J. Wang, M. She, S. Nahavandi, and A. Kouzani, “A review of vision-based gait recognition methods for human identification,” in Proc. Conf. on Digital Image Computing: Techniques and Applications (Sydney, 2010), pp. 320–327.

    Google Scholar 

  32. Q. Xiao, “Technology review–biometrics-technology, application, challenge, and computational intelligence solutions,” IEEE Comput. Intellig. Mag. 2, 5 (2007).

    Article  Google Scholar 

  33. S. Sarkar, P. Phillips, Z. Liu, I. R. Vega, P. Grother, and K. Bowyer, “The humanid gait challenge problem: data sets, performance, and analysis,” IEEE Trans. Pattern Anal. Mach. Intellig. 27, 166 (2005).

    Google Scholar 

  34. T. Mandal and Q. J. Wu, “Face recognition using curvelet based pca,” in Proc. 19th IEEE Int. Conf. on Pattern Recognition ICPR 2008 (Tampa, FL, 2008), pp. 1–4.

    Google Scholar 

  35. E. Candes, L. Demanet, D. Donoho, and L. Ying, “Fast discrete curvelet transforms,” Multiscale Modeling Simulation 5, 861 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  36. J.-L. Starck, E. J. Candès, and D. L. Donoho, “The curvelet transform for image denoising,” IEEE Trans. Image Processing 11, 670 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  37. S. Arivazhagan, L. Ganesan, and S. T. Kumar, “Texture classification using curvelet statistical and cooccurrence features,” in Proc. ICPR 2006 (Hong Kong, 2006), Vol. 2, pp. 938–941.

    Google Scholar 

  38. M. Manikandan, A. Saravanan, and B. K. Bagan, “Curvelet transform based embedded lossy image compression,” in Proc. IEEE Int. Conf. on Signal Processing, Communications and Networking ICSCN’07 (Chennai, 2007), pp. 274–276.

    Google Scholar 

  39. A. Majumdar, “Bangla basic character recognition using digital curvelet transform,” J. Pattern Recogn. Res. 2, 17 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Chhatrala.

Additional information

The article is published in the original.

Risil Chhatrala is a research scholar at J.S.P.M., Rajarshi Sahu College of Engineering and Research, Savitribai Phule Pune University. He has published 2 research paper in reputed international journals and 3 papers in other international journals in the field of Image/Video Processing and Pattern Recognition. His research interests include image and video processing, pattern recognition.

Dattatray V. Jadhav is a well-known author in the field of the journal scope. Currently, he is Principal, Government Polytechnic, Ambad, Maharastra, India. His research interests include signal processing, pattern recognition, image and video processing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chhatrala, R., Jadhav, D. Gait recognition based on curvelet transform and PCANet. Pattern Recognit. Image Anal. 27, 525–531 (2017). https://doi.org/10.1134/S1054661817030075

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054661817030075

Keywords

Navigation