Skip to main content
Log in

Capture into rydberg states and momentum distributions of ionized electrons

  • Tunneling
  • Published:
Laser Physics

Abstract

The yield of neutral excited atoms and low-energy photoelectrons generated by the electron dynamics in the combined Coulomb and laser field after tunneling is investigated. We present results of Monte-Carlo simulations built on the two-step semiclassical model, as well as analytic estimates and scaling relations for the population trapping into the Rydberg states. It is shown that mainly those electrons are captured into bound states of the neutral atom that due to their initial conditions (i) have moderate drift momentum imparted by the laser field and (ii) avoid strong interaction (“hard” collision) with the ion. In addition, it is demonstrated that the channel of capture, when accounted for in semiclassical calculations, has a pronounced effect on the momentum distribution of electrons with small positive energy. For the parameters that we investigated its presence leads to a dip at zero momentum in the longitudinal momentum distribution of the ionized electrons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Becker, F. Grasbon, R. Kopold, et al., Adv. At. Mol. Opt. Phys. 48, 35 (2002).

    Article  Google Scholar 

  2. A. Becker and F. H. M. Faisal, J. Phys. B: At. Mol. Opt. Phys. 38, R1 (2005).

    Article  ADS  Google Scholar 

  3. D. B. Milošević and F. Ehlotzky, Adv. At. Mol. Opt. Phys. 49, 373 (2003).

    Google Scholar 

  4. M. V. Fedorov, Atomic and Free Electrons in a Strong Light Field (World Sci., Singapore, 1997).

    Google Scholar 

  5. N. B. Delone and V. P. Krainov, Multiphoton Processes in Atoms, Ch. 9 (Springer, Berlin, 2000).

    Google Scholar 

  6. T. Nubbemeyer, K. Gorling, A. Saenz, et al., Phys. Rev. Lett. 101, 233001 (2008).

    Google Scholar 

  7. G. L. Yudin and M. Yu. Ivanov, Phys. Rev. A 63, 033404 (2001).

    Google Scholar 

  8. T. Brabec, M. Yu. Ivanov, and P. B. Corkum, Phys. Rev. A 54, R2551 (1996).

    Article  ADS  Google Scholar 

  9. D. Comtois, D. Zeidler, H. Pepin, et al., J. Phys. B: At. Mol. Opt. Phys. 38, 1923 (2005).

    Article  ADS  Google Scholar 

  10. J. Chen and C. H. Nam, Phys. Rev. A 66, 053415 (2002).

  11. K. I. Dimitriou, D. G. Arbo, S. Yoshida, et al., Phys. Rev. A 70, 061401(R) (2004).

  12. D. G. Arbo, S. Yoshida, E. Persson, et al., Phys. Rev. Lett. 96, 143003 (2006).

  13. L. V. Keldysh, Zh. Eksp. Teor. Fiz. 47, 1945 (1964) [Sov. Phys. JETP 20, 1307 (1965)].

    Google Scholar 

  14. F. H. M. Faisal, J. Phys. B 6, L89 (1973); H. R. Reiss, Phys. Rev. A 22, 1786 (1980).

    Article  ADS  Google Scholar 

  15. S. P. Goreslavski, G. G. Paulus, S. V. Popruzhenko, and N. I. Shvetsov-Shilovski, Phys. Rev. Lett. 93, 233002 (2004).

    Google Scholar 

  16. N. I. Shvetsov-Shilovski, S. P. Goreslavski, S. V. Popruzhenko, and W. Becker, Phys. Rev. A 77, 063405 (2008).

    Google Scholar 

  17. R. R. Jones, D. W. Schumacher, and P. H. Bucksbaum, Phys. Rev. A 47, R49 (1993).

    Article  ADS  Google Scholar 

  18. R. Moshammer, J. Ullrich, B. Feuerstein, et al., Phys. Rev. Lett. 91, 113002 (2002).

    Google Scholar 

  19. A. Rudenko, K. Zrost, C. D. Schröter, et al., J. Phys. B: At. Mol. Opt. Phys. 37, L407 (2004).

    Article  ADS  Google Scholar 

  20. F. H. M. Faisal and G. Schlegel, J. Phys. B: At. Mol. Opt. Phys. 38, L323 (2006).

    Google Scholar 

  21. A. S. Alnaser, C. M. Maharjan, P. Wang, and I. V. Litvinyuk, J. Phys. B: At. Mol. Opt. Phys. 39, L323 (2006).

    Article  ADS  Google Scholar 

  22. C. M. Maharjan, A. S. Alnaser, I. V. Litvinyuk, et al., J. Phys. B: At. Mol. Opt. Phys. 39, 1955 (2006).

    Article  ADS  Google Scholar 

  23. L. D. Landau and E. M. Lifshitz, Mechanics (Pergamon, Oxford, 1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Shvetsov-Shilovski.

Additional information

Original Russian Text © Astro, Ltd., 2009.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shvetsov-Shilovski, N.I., Goreslavski, S.P., Popruzhenko, S.V. et al. Capture into rydberg states and momentum distributions of ionized electrons. Laser Phys. 19, 1550–1558 (2009). https://doi.org/10.1134/S1054660X09150377

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X09150377

PACS numbers

Navigation