Skip to main content
Log in

The Kuramoto-Sivashinsky equation for the defect-deformation instability of a surface-stressed nanolayer

  • Fundamental Problems
  • Published:
Laser Physics

Abstract

It is demonstrated that the evolution of the surface relief of the stressed elastic nanolayer that interacts with mobile point defects can be described using a nonlinear equation similar to the Kuramoto-Sivashinsky equation. The solution to the equation describes the threshold (with respect to the defect concentration or the mechanical stress) transition to the periodic spatially bent state of the layer with the simultaneous generation of spatially periodic defect clusters at the extrema of the spontaneously emerging surface relief. In this case, the layer deformation corresponds to the displacements in the static bending Lamb wave. The self-organizing periodic cellular deformation-defect surface structure can serve as a universal seed for the subsequent growth of nanoparticles in the processes of laser, ion, or electrochemical etching and in molecular beam epitaxy of nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Emel’yanov, Laser Phys. 18, 682 (2008).

    Article  ADS  Google Scholar 

  2. Y. Kuramoto, Chemical Oscillations, Waves and Turbulence (Springer, Berlin, 1984).

    MATH  Google Scholar 

  3. G. I. Sivashinsky, Ann. Rev. Fluid Mech. 15, 179 (1983).

    Article  Google Scholar 

  4. P. C. Hohenberg and B. I. Shraiman, Physica D 37, 109 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  5. R. M. Bradley and J. M. E. Harper, J. Vac. Sci. Technol. A 6, 2390 (1988).

    Article  ADS  Google Scholar 

  6. B. Kahng, H. Jeong, and A. L. Barabasi, Appl. Phys. Lett. 78, 805 (2001).

    Article  ADS  Google Scholar 

  7. C. E. Bottani and M. Yakona, J. Phys.: Condens. Matter 1, 8337 (1989).

    Article  ADS  Google Scholar 

  8. B. W. Dodson and J. Y. Tsao, Appl. Phys. Lett. 51, 1325 (1987).

    Article  ADS  Google Scholar 

  9. I. A. Viktorov, Surface Acoustic Waves in Solids (Nauka, Moscow, 1981) [in Russian].

    Google Scholar 

  10. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 7: Theory of Elasticity (Nauka, Moscow, 1982; Pergamon, New York, 1986).

    Google Scholar 

  11. V. I. Emel’yanov, Kvant. Elektron. 28, 2 (1998) [Quant. Electron. 28, 182 (1998)].

    Google Scholar 

  12. V. I. Emel’yanov, Laser Phys. 18, 1435 (2008).

    Article  ADS  Google Scholar 

  13. V. I. Emel’yanov, in Nonlinear Waves, Lectures at the VII All-Union School on Nonlinear Waves, Gorky, 1987 (Nauka, Moscow, 1989), p. 198 [in Russian].

    Google Scholar 

  14. R. J. Asaro and W. A. Tiller, Metall. Trans. 3, 1789 (1972).

    Article  Google Scholar 

  15. M. A. Grinfeld, Sov. Phys. Dokl. 31, 831 (1986).

    ADS  Google Scholar 

  16. T. Bobek, S. Fasko, T. Dekorsy, and H. Kurz, Nucl. Instrum. Methods Phys. Res. B 178, 101 (2001).

    Article  ADS  Google Scholar 

  17. S. Ruspony, G. Constantini, F. B. de Mongeot, C. Boragno, and U. Valbusa, Appl. Phys. Lett. 75, 3318 (1999).

    Article  Google Scholar 

  18. V. I. Emel’yanov and A. I. Mikaberidze, Phys. Rev. B 72, 235407-1 (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Emel’yanov.

Additional information

Original Text © Astro, Ltd., 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Emel’yanov, V.I. The Kuramoto-Sivashinsky equation for the defect-deformation instability of a surface-stressed nanolayer. Laser Phys. 19, 538–543 (2009). https://doi.org/10.1134/S1054660X0903030X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X0903030X

PACS numbers

Navigation