Skip to main content
Log in

Specific features of the self-action of elliptically polarized light pulses and the formation of vector solitons in an isotropic medium with the anomalous frequency dispersion and the spatial dispersion of cubic nonlinearity

  • Nonlinear Optics and Spectroscopy
  • Published:
Laser Physics

Abstract

Numerical methods are used to study the effect of local and nonlocal nonlinear optical susceptibilities on the parameters of a soliton whose degree of ellipticity depends on time and that is formed at a distance of several dispersion lengths in a medium with the anomalous frequency dispersion. The rotation angle of the major axis of the polarization ellipse does not depend on time and linearly increases with an increasing propagation coordinate. If the tensor components of the local nonlinear susceptibility have opposite signs, the incident elliptically polarized pulse can propagate in the regime that involves the pulse splitting into components for which the absolute values of the electric-field degrees of ellipticity are close to unity. In this case, the electric-field vector at the center of the pulse rotates in the opposite direction with respect to the rotation at the edges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin, Optics of Femtosecond Laser Pulses (Amer. Inst. Physics, New York, 1992).

    Google Scholar 

  2. N. N. Akhmediev and A. Ankiewicz, Solitons. Nonlinear Pulses and Beams (Chapman & Hall, London, 1997).

    Google Scholar 

  3. Yu. S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Elsevier Sci., USA, 2003).

    Google Scholar 

  4. A. A. Golubkov and V. A. Makarov, J. Mod. Opt. 37, 1531 (1990).

    Article  ADS  Google Scholar 

  5. S. Wabnitz, Opt., Lett. 14, 1071 (1989).

    Article  ADS  Google Scholar 

  6. A. B. Aceves and S. Wabnitz, Phys. Lett. A 141, 37 (1990).

    Article  ADS  Google Scholar 

  7. V. V. Afanasjev, E. M. Dianov, and V. N. Serkin, IEEE J. Quant. Electron. 25, 2656 (1989).

    Article  ADS  Google Scholar 

  8. A. P. Sukhorukov and D. V. Persheev, Moscow Univ. Phys. Bull. 46, 37 (1991).

    MathSciNet  Google Scholar 

  9. S. Wabnitz, Opt. Lett. 20, 261 (1995).

    Article  ADS  Google Scholar 

  10. L. Torner, D. Mihalache, D. Mazilu, and N. N. Akhmediev, Opt. Comm. 138, 105 (1997).

    Article  ADS  Google Scholar 

  11. V. A. Makarov and K. P. Petrov, Sov. J. Quantum Electron. 23, 880 (1993).

    Article  ADS  Google Scholar 

  12. V. M. Eleonskii, V. G. Korolev, N. E. Kulagin, and L. P. Shilnikov, Sov. Phys. JETP 72, 619 (1991).

    MathSciNet  Google Scholar 

  13. A. A. Golubkov, V. A. Makarov, I. G. Rakhmatullina, Sov. J. Quantum Electron. 22, 1117 (1992).

    Article  ADS  Google Scholar 

  14. M. Karlsson, D. J. Kaup, and B. A. Malomed, Phys. Rev. E 54, 5802 (1996).

    Article  ADS  Google Scholar 

  15. V. A. Vysloukh, A. V. Zasimova, and V. A. Makarov, Moscow Univ. Phys. Bull. 50, 90 (1995).

    Google Scholar 

  16. S. Stagira, E. Priori, G. Sansone, M. Nisoli, and S. De Silvestri, Phys. Rev. A 66, 033810 (2002).

    Google Scholar 

  17. D. J. Kaup, B. A. Malomed, and R. S. Tasgal, Phys. Rev. E 48, 3049 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  18. M. Haeltermann and A. P. Sheppard, Phys. Lett. A 194, 191 (1994).

    Article  ADS  Google Scholar 

  19. J. Yang and Y. Tan, Phys. Rev. Lett. 85, 3624 (2000).

    Article  ADS  Google Scholar 

  20. J. Yang, Phys. Rev. E 64, 026607 (2001).

    Google Scholar 

  21. R. H. Goodman and R. Haberman, Phys. Rev. E 71, 056606 (2005).

    Google Scholar 

  22. T. Kanna, M. Lakshmanan, P. T. Dinda, and N. N. Akhmediev, Phys. Rev. E 73, 026604 (2006).

    Google Scholar 

  23. M. Delqué, M. Chauvet, H. Maillotte, and T. Sylvestre, Opt. Commun. 249, 285 (2005).

    Article  ADS  Google Scholar 

  24. C. Cambournac, T. Sylvestre, H. Maillotte, B. Vanderlinden, P. Kockaert, Ph. Emplit, and M. Haelterman, Phys. Rev. Lett. 89, 083901 (2002).

  25. M. Delqué, G. Fanjoux, and T. Sylvestre, Phys. Rev. E 75, 016611 (2007).

    Google Scholar 

  26. O. V. Rudenko, A. P. Sukhorukov, and M. B. Vinogradova, Wave Theory (Nauka, Moscow, 1990).

    MATH  Google Scholar 

  27. A. A. Golubkov, V. A. Makarov, I. A. Perezhogin, and S. S. Savvina, Proc. SPIE 5333, 30 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Perezhogin.

Additional information

Original Text ©, Ltd., 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makarov, V.A., Perezhogin, I.A. & Potravkin, N.N. Specific features of the self-action of elliptically polarized light pulses and the formation of vector solitons in an isotropic medium with the anomalous frequency dispersion and the spatial dispersion of cubic nonlinearity. Laser Phys. 19, 322–329 (2009). https://doi.org/10.1134/S1054660X0902025X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X0902025X

PACS numbers

Navigation