Skip to main content
Log in

Effect of the Nanorod Size on Energy Absorption at the Microlevel under Cyclic Loading

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

Molecular dynamics simulations were performed to investigate the effect of the size of the simulated nanoscale system on energy absorption under cyclic loading, as well as on further damage and failure of the system. Two copper nanorods with perfect crystal structure were considered: a base rod measured 50 × 5 × 5 lattice cells and a larger nanorod measured 200 × 20 × 20 cells. It was found that energy absorption is greatly affected by the ratio between the number of atoms simulating the grip and the total number of atoms in the system. Irreversible damage to the crystal structure in the larger system can be seen by a sharp increase in the maximum dispersion of atomic planes. With increasing nanorod size, the transformation of the crystal structure in regions subjected to cyclic loading leads to the formation of symmetric regions with a different lattice type at the same cyclic loading parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ivanova, V.S., Synergetics: Strength and Fracture of Metallic Materials, Cambridge: Cambridge International Science, 1998. http://b-ok.org/book/1022238/027c38

    Google Scholar 

  2. Shanyavskiy, A., Scales of Metal Fatigue Failures and Mechanisms for Origin of Subsurface Fracture Formation, Solid State Phenomena, 2017, vol. 258, pp. 249–254. doi https://doi.org/10.4028/www.scientific.net/SSP.258.249

    Article  Google Scholar 

  3. Sutrakar, V.K., Atomistic Modeling of Strain-Controlled Cyclic Poading in TiAl Crystalline Nanowire, J. Phys. Condens. Mater., 2014, vol. 26, p. 265003. doi https://doi.org/10.1088/0953-8984/26/26/265003

    Article  Google Scholar 

  4. Horstemeyer, M.F., Farkas, D., Kim, S., Tang, T., and Potirniche, G., Nanostructurally Small Cracks (NSC): A Review on Atomistic Modeling of Fatigue, Int. J. Fatigue, 2010, vol. 32, no. 9, pp. 1473–1502. doi https://doi.org/10.1016/j.ijfatigue.2010.01.006

    Article  Google Scholar 

  5. Uhnakova, A., Machova, A., and Hora, P., 3D Atomistic Simulation of Fatigue Behavior of a Ductile Crack in BCC Iron, Int. J. Fatigue, 2011, vol. 33, no. 9, pp. 1182–1188. doi https://doi.org/10.1016/j.ijfatigue.2011.02.011

    Article  Google Scholar 

  6. Petucci, J., PeBlond, C., and Karimi, M., Molecular Dynamics Simulations of Brittle Fracture in FCC Crystalline Materials in the Presence of Defects, Comput. Mater. Sci., 2014, vol. 86, pp. 130–139. doi https://doi.org/10.1016/j.commatsci.2014.01.049

    Article  Google Scholar 

  7. Golovnev, I.F., Golovneva, E.I., and Fomin, V.M., The Influence of a Nanocrystal Size on the Results of Molecular-Dynamics Modeling, Comput. Mater. Sci., 2006, vol. 36, pp. 176–179. doi https://doi.org/10.1016/j.commatsci.2004.12.082

    Article  Google Scholar 

  8. Golovnev, I.F., Golovneva, E.I., and Merzhievskii, P.A., Effect of Nanostructure Size on Parameters of Rotational Fields Induced by External Compressive Stress, Phys. Mesomech., 2018, vol. 21, no. 3, pp. 242–248. doi https://doi.org/10.1134/S1029959918030086

    Article  Google Scholar 

  9. Zhuo, X.R. and Beom, H.G., Size-Dependent Fracture Properties of Cracked Silicon Nanofilms, Mater. Sci. Eng. A, 2015, vol. 636, pp. 470–475. doi https://doi.org/10.1016/j.msea.2015.04.015

    Article  Google Scholar 

  10. Sadeghian, H., Goosen, J.F.P., Bossche, A., Thijsse, B.J., and van Keulen, F., Effects of Size and Surface on the Elasticity of Silicon Nanoplates: Molecular Dynamics and Semi-Continuum Approaches, Thin Solid Films, 2011, vol. 520, no. 1, pp. 391–399. doi https://doi.org/10.1016/j.tsf.2011.06.049

    Article  ADS  Google Scholar 

  11. Huang, D. and Qiao, P., Mechanical Behavior and Size Sensitivity of Nanocrystalline Nickel Wires Using Molecular Dynamics Simulation, J. Aer. Eng., 2011, vol. 24, no. 2, pp. 147–153. doi https://doi.org/10.1061/(ASCE)AS.1943-5525.0000006

    Article  Google Scholar 

  12. Tang, T., Kim, S., Horstemeyer, M.F., and Wang, P., Atomistic Modeling of Crack Growth in Magnesium Single Crystal, Eng. Fracture Mech., 2011, vol. 78, no. 1, pp. 191–2011. doi https://doi.org/10.1016/j.engfracmech.2010.11.009.

    Article  Google Scholar 

  13. Tang, T., Kim, S., Horstemeyer, M.F., and Wang, P., A Molecular Dynamics Study of Fracture Behavior in Magnesium Single Crystal, Magnesium Technology, Conf. Magnesium Technology held during TMS 140th Annual Meeting and Exhibition, 2011, pp. 349–355.

  14. Tang, T., Kim, S., and Horstemeyer, M.F., Molecular Dynamics Simulations of Void Growth and Coalescence in Single Crystal Magnesium, Acta Mater., 2010, vol. 58, no. 14, pp. 4742–4759. doi https://doi.org/10.1016/j.actamat.2010.05.011

    Article  Google Scholar 

  15. Sadeghian, H., Yang Chung-Kai, Goosen, J.F.P., Bossche, A., Staufer, U., French, P.J., and van Keulen, F., Effects of Size and Defects on the Elasticity of Silicon Nanocantilevers, J. Micromech. Microeng., 20th Micromechanics Europe Workshop (MME 09), 2010, vol. 20, no. 6, p. 064012. doi https://doi.org/10.1088/0960-1317/20/6/064012

    Article  Google Scholar 

  16. Sadeghian, H., Goosen, J.F.P., Bossche, A., Thijsse, B.J, and van Keulen, F., Size-Dependent Elastic Behavior of Silicon Nanofilms: Molecular Dynamics Study, IMECE 2009: Proceedings of the ASME International Mechanical Engineering Congress and Exposition, 2010, vol. 12, parts A-B, pp. 151–156.

    Google Scholar 

  17. Chang, I.P. and Chen, Y.C., Is the Molecular Statics Method Suitable for the Study of Nanomaterials? A Study Case of Nanowires, Nanotechnology, 2007, vol. 18, no. 31, pp. 315701. doi https://doi.org/10.1088/0957-4484/18/31/315701

    Article  ADS  Google Scholar 

  18. Potirniche, G.P., Horstemeyer, M.F., Wagner, G.J., and Gullett, P.M., A Molecular Dynamics Study of Void Growth and Coalescence in Single Crystal Nickel, Int. J. Plasticity, 2006, vol. 22, no. 2, pp. 257–278. doi https://doi.org/10.1016/j.ijplas.2005.02.001

    Article  Google Scholar 

  19. Wu, H.A., Soh, A.K., Wang, X.X., and Sun, Z.H., Strength and Fracture of Single Crystal Metal Nanowire, Advances in Fracture and Failure Prevention. Conf. Book Series: Key Engineering Materials, Kishimoto, K., et al., Eds., 2004, vol. 261–263, part 1–2, pp. 33–38.

  20. Golovnev, I.F., Golovneva, E.I., and Utkin, A.V., Molecular-Dynamic Investigation of the Initial Failure of the Crystal Structure at the External Cyclic Uniaxial Extension, Proc. Struct. Integr., 2018, vol. 13, pp. 1632–1637. doi https://doi.org/10.1016/j.prostr.2018.12.343

    Article  Google Scholar 

  21. Voter, A.F., Embedded Atom Method Potentials for Seven FCC Metals: Ni, Pd, Pt, Cu, Ag, Au, and Al, Los Alamos Unclassified Technical Report # LA-UR 93-3901, 1993.

  22. Golovneva, E.I., Golovnev, I.F., and Fomin, V.M., Simulation of Quasistatic Processes in Crystals by a Molecular Dynamics Method, Phys. Mesomech., 2003, vol. 6, no. 5–6, pp. 41–45.

    Google Scholar 

  23. Allen, M.P. and Tildesley, D.J., Computer Simulation of Liquids, New York: Clarendon Press, 1987.

    MATH  Google Scholar 

  24. Utkin, A.V., Analysis of Parallel Molecular Dynamics for MPI, CUDA and CUDA-MPI Implementation, Math. Montisnigri, 2017, vol. 39, pp. 101–109.

    MathSciNet  Google Scholar 

  25. Golovnev, I., Golovneva, E., and Utkin, A., Study of Disturbance Energy Absorption by the System under Uniaxial Cyclic Load, Eng. Fail. Analysis, 2019 (in print).

  26. Stukowski, A., Visualization and Analysis of Atomistic Simulation Data with OVITO—the Open Visualization Tool, Modell. Simul. Mater. Sci. Eng., 2010, vol. 18, p. 015012.

    Article  ADS  Google Scholar 

  27. Stukowski, A., Structure Identification Methods for Atomistic Simulations of Crystalline Materials, Modell. Simul. Mater. Sci. Eng., 2012, vol. 20, p. 045021.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Golovneva.

Additional information

Russian Text © The Author(s), 2019, published in Fizicheskaya Mezomekhanika, 2019, Vol. 22, No. 3, pp. 88–99.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golovnev, I.F., Golovneva, E.I. & Utkin, A.V. Effect of the Nanorod Size on Energy Absorption at the Microlevel under Cyclic Loading. Phys Mesomech 22, 420–431 (2019). https://doi.org/10.1134/S1029959919050084

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959919050084

Keywords

Navigation