Skip to main content
Log in

Estimation of Chlorine Fugacity in Low-Н2О Fluid of the C–O–(H)–NaCl System in the Cumulus of Ultramafic–Mafic Intrusions

  • PETROLOGY
  • Published:
Doklady Earth Sciences Aims and scope Submit manuscript

Abstract

At high PT parameters of cumulates of ultramafic–mafic intrusions and low oxygen fugacity (below QFM buffer), Pt in the form of a carbonyl complex is dissolved in a CO2-bearing fluid. The high solubility of Pt chloride in brines with NaCl, which is related to the formation of low-sulfide deposits of platinum group elements, is attained only at high oxygen fugacity (above the QFM buffer). It is suggested that native platinum at low oxygen fugacity in low-Н2О СО–СО22О) fluid can also transit into a cation-soluble form due to the reaction of chloration. The experimental data are provided for the interaction of NaCl with magnetite and chromite (accessory minerals of ultramafic–mafic intrusions) at Р = 200 MPa, Т = 950°С, and fO2 <QFM with the formation of Fe and Cr chlorides. As shown by thermodynamic calculations, the FeCl3 and FeCl2 equilibrium provides a high chlorine fugacity (fCl2), which is only 3–4 orders of magnitude lower than fCl2 in Pt–PtCl2 equilibrium and 2.5–3.0 orders of magnitude higher than in 1 M HCl aqueous fluid at the same Р‒ТfO2 parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. A. G. Mochalov, O. V. Yakubovich, F. M. Stuart, and N. S. Bortnikov, Dokl. Earth Sci. 498 (1), 372–379 (2021). https://doi.org/10.1134/S1028334X2105010X

    Article  CAS  Google Scholar 

  2. A. E. Boudreau, E. A. Mathez, and I. S. McCallum, J. Petrol. 27 (4), 967–986 (1986). https://doi.org/10.1093/petrology/27.4.967

    Article  CAS  Google Scholar 

  3. G. P. Orlova, I. D. Ryabchikov, V. V. Distler, and G. D. Gladyshev, Int. Geol. Rev. 29 (3), 360–362 (1987). https://doi.org/10.1080/00206818709466152

    Article  Google Scholar 

  4. K. I. Shmulovich, P. G. Bukhtiyarov, and E. S. Persikov, Geochem. Int. 56, 240–245 (2018). https://doi.org/10.1134/S0016702918030084

    Article  CAS  Google Scholar 

  5. A. Simakin, T. Salova, A. Y. Borisova, G. S. Pokrovski, O. Shaposhnikova, O. Tyutyunnik, G. Bondarenko, A.  Nekrasov, and S. I. Isaenko, Minerals 11, 225 (2021). https://doi.org/10.3390/min11020225

    Article  CAS  Google Scholar 

  6. N. A. Sullivan, Z. J. Zajacz, M. Brenan, and A. Tsay, Geochim. Cosmochim. Acta 316, 253–272 (2022).

    Article  CAS  Google Scholar 

  7. J. H. Kim and S. I. Woo, Chem. Mater. 10 (11), 3576–3582 (1998). https://doi.org/10.1021/cm980337o

    Article  CAS  Google Scholar 

  8. E. A. Mathez, V. J. Dietrich, J. R. Holloway, and A. E. Boudreau, J. Petrol. 30 (1), 153–173 (1989). https://doi.org/10.1093/petrology/30.1.153

    Article  CAS  Google Scholar 

  9. I. Barin, Thermochemical Data of Pure Substances (VCH, Weinheim, New York, 1995). https://doi.org/10.1002/978352761982.

  10. R. W. Thomas and B. J. Wood, Geochim. Cosmochim. Acta 294, 28–42 (2021). https://doi.org/10.1016/j.gca.2020.11.018

    Article  CAS  Google Scholar 

  11. A. E. Boudreau, in Hydromagmatic Processes and Platinum-Group Element Deposits in Layered Intrusions (Cambridge Univ. Press, Cambridge, 2019), pp. 101–113.

    Book  Google Scholar 

  12. L. Alcaraz, B. Sotillo, J. F. Marco, F. J. Alguacil, P. Fernández, and F. A. López, Materials 14, 4840 (2021). https://doi.org/10.3390/ma14174840

    Article  CAS  Google Scholar 

  13. F. Meneses, R. Qi, A. J. Healey, You Yi, I. O. Robertson, S. C. Scholten, A. Keerthi, G. Harrison, L. C. L. Hollenberg, B. Radha, and J.-P. Tetienne, Stray magnetic field imaging of thin exfoliated iron halides flakes (2023). https://doi.org/10.48550/arXiv.2307.10561

  14. L. Scholten, C. Schmidt, P. Lecumberri-Sanchez, M. Newville, A. Lanzirotti, M. C. Sirbescu, and M.  Steele-MacInnis, Geochim. Cosmochim. Acta 252, 126–143 (2019). https://doi.org/10.1016/j.gca.2019.03.001

    Article  CAS  Google Scholar 

  15. S. V. Churakov and M. Gottschalk, Geochim. Cosmochim. Acta 67 (13), 2415–2425 (2003). https://doi.org/10.1016/S0016-7037(02)01348-0

    Article  CAS  Google Scholar 

  16. N. W. Hanf and M. J. Sole, Trans. Faraday Soc. 66, 3065–3074 (1970). https://doi.org/10.1039/TF9706603065

    Article  CAS  Google Scholar 

  17. L. Ya. Aranovich and R. C. Newton, Contrib. Mineral. Petrol. 127, 261–271 (1997). https://doi.org/10.1007/s004100050279

    Article  CAS  Google Scholar 

  18. J. J. Hanley, J. E. Mungall, T. Pettke, E. T. C. Spooner, and C. J. Bray, J. Petrol. 49 (6), 1133–1160 (2008). https://doi.org/10.1093/petrology/egn020

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to Academician L.Ya. Aranovich for constructive criticism that allowed a significant improvement in the initial manuscript. We also acknowledge G.V. Bondarenko for measurement of Raman spectra of some experimental samples at the Institute of Experimental Mineralogy, Russian Academy of Sciences, Chernogolovka, Russia.

Funding

This work was supported by the Russian Science Foundation, project no. 23-27-00252.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Simakin.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by I. Melekestseva

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simakin, A.G., Shaposhnikova, O.Y., Devyatova, V.N. et al. Estimation of Chlorine Fugacity in Low-Н2О Fluid of the C–O–(H)–NaCl System in the Cumulus of Ultramafic–Mafic Intrusions. Dokl. Earth Sc. 515, 423–429 (2024). https://doi.org/10.1134/S1028334X23603292

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1028334X23603292

Keywords:

Navigation