Skip to main content
Log in

Spinel Lherzolite of the Northern Kraka Massif (Southern Urals): The First REE ID‒ICP‒MS, 87Sr‒86Sr, and 147Sm‒143Nd AL ID-TIMS Isotope Constraints

  • GEOCHEMISTRY
  • Published:
Doklady Earth Sciences Aims and scope Submit manuscript

Abstract

The results of study of the REE IDICPMS, 86Sr/87Sr, and 147Sm143Nd AL ID-TIMS isotope systematics of spinel lherzolite from the Northern Kraka Massif, which is part of the largest (>900 km2) lherzolitic allochthon thrust over the bathyal and shelf deposits of the passive continental margin of the East European Platform, are reported. As a result, an isochron dependence (MSWD = 0.85) was revealed for the first time, which determines the age of 545 ± 26 Ma and the high value of the initial ratio (143Nd/144Nd)0 = 0.512390 ± 0.000054, corresponding to εNd = +8.9 within the model. The resulting REE, 87Sr/86Sr, and 147Sm–143Nd isotopic signatures indicate the melting of an already depleted protolith, which can be identified as a mantle source, with MORB-like parameters. The calculated isochron age of homogenization of the 147Sm–143Nd isotope system in combination with the available complex of geological and geochemical data allows us to place the Late Vendian phase (epoch) of folding and orogeny in the Urals in the interval of 545 ± 26 Ma. Comparison of these data with materials on the geology of Central and Western Europe allows us to correlate the Timanide structures formed as a result of this phase of folding with the Cadomian, which, based on global reconstructions of continents for the end of the Proterozoic, will ultimately authorize the hypothesis of the existence of the Cadomian orogeny on the periphery of Gondwana.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

Notes

  1. Roman numerals indicate references from the list of supplementary references.

  2. Focusing on the discussion about the analogy of the Nurali, Mindyak, and Kraka massifs, which are currently geographically separated (Fig. 1d), we can quote the statement of the authors of [2] that, in accordance with the U‒Pb SHRIMP-II-age range of 390–445 Ma, the reactivation of the Kraka Massif in the Middle Paleozoic suggests a connection with the processes of displacement of the mantle block and its allochthonous movement into the upper crust.

REFERENCES

  1. E. V. Anikina, I. A. Rusin, A. I. Rusin, and A. A. Krasnobaev, Tr. Inst. Geol. Geokhim. im. Akad. A. N. Zavaritskogo, No. 161, 158–166 (2014).

    Google Scholar 

  2. A. A. Krasnobaev, A. I. Rusin, I. A. Rusin, and S. V. Busharina, Geochem. Int. 49 (5), 482–498 (2011).

    Article  CAS  Google Scholar 

  3. V. N. Puchkov, Paleogeodynamics of the Southern and Middle Urals (Dauriya, Ufa, 2000) [in Russian].

    Google Scholar 

  4. Yu. L. Ronkin, D. Z. Zhuravlev, O. P. Lepikhina, and G. A. Lepikhina, in Yearbook-2007. Collection of Scientific Works (Zavaritsky Inst. Geol. Geochem. Ural Branch Russ. Acad. Sci., Yekaterinburg, 2008), pp. 409–420 [in Russian].

  5. J.-L. Bodinier and M. Godard, in Treatise on Geochemistry (Elsevier, 2007), Vol. 2, pp. 1–73. https://doi.org/10.1016/b0-08-043751-6/02004-1

    Book  Google Scholar 

  6. J. L. Bodinier, C. Dupuy, and J. Dostal, Geochim. Cosmochim. Acta 52 (12), 2893–2907 (1988). https://doi.org/10.1016/0016-7037(88)90156-1

    Article  CAS  Google Scholar 

  7. F. Boudier and A. Nicolas, Earth Planet. Sci. Lett. 76, 84–92 (1985).

    Article  Google Scholar 

  8. I. W. D. Dalziel, GSA Today 2 (11), 237–241 (1992).

    Google Scholar 

  9. H. Downes, J.-L. Bodinier, M. F. Thirlwall, J.-P. Lorand, and J. Fabries, J. Petrol. Spec. Vol. 2, 97–115 (1991). https://doi.org/10.1093/petrology/special_volume.2.97

    Article  Google Scholar 

  10. C. J. Garrido, J.-L. Bodinier, and O. Alard, Earth Planet. Sci. Lett. 181 (3), 341–358 (2000). https://doi.org/10.1016/s0012-821x(00)00201-6

    Article  CAS  Google Scholar 

  11. A. Grunow, R. Hanson, and T. Wilson, Geology 24 (12), 1063–1066 (1996). https://doi.org/10.1130/0091-7613(1996)024<1063:waopad>2.3.co;2

    Article  Google Scholar 

  12. K. R. Ludwig, User’s Manual for Isoplot/Ex Ver. 3.6: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronol. Center Spec. Publ. No. 4 (Berkeley Geochronol. Center, Berkeley, CA, 2008).

  13. V. N. Puchkov, in Orogeny Through Time, Ed. by J.-P. Burg and M. Ford (Geol. Soc., London, 1997), pp. 201–236.

  14. L. C. Reisberg, C. J. Allegre, and J.-M. Luck, Earth Planet. Sci. Lett. 105, 196–213 (1991).

    Article  CAS  Google Scholar 

  15. Y. L. Ronkin, T. V. Karaseva, and A. V. Maslov, Dokl. Earth Sci. 496, 130–134 (2021). https://doi.org/10.1134/S1028334X2102015X

    Article  CAS  Google Scholar 

  16. A. Saintot, R. A. Stephenson, S. Stovba, M.-F. Brunet, T. Yegorova, and V. Starostenko, Geol. Soc. London, Mem. 32 (1), 481–505 (2006). https://doi.org/10.1144/gsl.mem.2006.032.01.30

    Article  Google Scholar 

  17. D. E. Saveliev, V. V. Shilovskikh, D. K. Makatov, and R. A. Gataullin, Mineral. Petrol. 116, 401–427 (2022).

    Article  CAS  Google Scholar 

  18. E. Stump, in Gondwana Six: Stratigraphy, Sedimentology, and Paleontology, Ed. by G. D. McKenzie (Am. Geophys. Union, 1987), pp. 77–87.

    Google Scholar 

  19. S. G. Tessalina, B. Bourdon, A. Gannoun, F. Capmas, J.-L. Birck, and C. J. Allegre, Chem. Geol. 240 (1–2), 61–84 (2007). https://doi.org/10.1016/j.chemgeo.2007.02.006

    Article  CAS  Google Scholar 

  20. T. Torsvik, M. Smethurst, J. Meert, R. Vandervoo, W. Mckerrow, M. Brasier, B. A. Sturt, and H. Walderhaug, Earth-Sci. Rev. 40 (3–4), 229–258 (1996). https://doi.org/10.1016/0012-8252(96)00008-6

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to O.P. Lepikhina and N.V. Cherednichenko (Institute of Geology and Geochemistry, Ural Branch, Russian Academy of Sciences) for their assistance in sample preparation of the studied material; D.E. Savel’ev (Institute of Geology, Ufa Science Center, Russian Academy of Sciences) for graphic materials to Fig. 1. Constructive comments and valuable suggestions from two anonymous reviewers significantly improved this manuscript.

Funding

This study is a part of a State Assignment of the Institute of Geology and Geochemistry, Ural Branch, Russian Academy of Sciences, nos. of state registration 123011800013-6 and 122022600107-1; project no. FUMZ-2022-0002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. L. Ronkin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Bobrov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ronkin, Y.L., Chashchukhin, I.S. & Puchkov, V.N. Spinel Lherzolite of the Northern Kraka Massif (Southern Urals): The First REE ID‒ICP‒MS, 87Sr‒86Sr, and 147Sm‒143Nd AL ID-TIMS Isotope Constraints. Dokl. Earth Sc. 514, 59–69 (2024). https://doi.org/10.1134/S1028334X23602365

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1028334X23602365

Keywords:

Navigation