Skip to main content
Log in

Features of the Cluster-Ion Treatment of the Surface of a KGd(WO4)2:Nd Single Crystal

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The features of the surface treatment of potassium-gadolinium-tungstate single crystals doped with neodymium ions by low- and high-energy argon cluster ions are considered. Two radically different treatment modes are employed: the low-energy mode for more efficient smoothing of the surface and high-energy for more effective etching of the target. The topography of the target surface is analyzed before and after cluster-ion treatment using atomic force microscopy. It is shown that treatment in the low-energy mode smoothes out irregularities on the target surface formed by chemical and mechanical polishing at an etching depth of less than 100 nm. A comparison is made of the root-mean-square roughness and total roughness of the initial and treated surfaces of potassium-gadolinium tungstate doped with neodymium ions. Survey X-ray photoelectron spectra of the initial surface of a KGd(WO4)2:Nd single crystal and after cluster-ion treatment in various modes are presented. It is demonstrated that the intensities of the potassium and gadolinium peaks decrease after cluster-ion treatment in both modes. A significant decrease in the concentration of potassium atoms in the surface layer of the target is explained by the preferential sputtering of potassium as a lighter chemical element. The mutual decrease in the concentrations of gadolinium and potassium atoms can be explained by the weak bonds of these atoms in the lattice of the KGd(WO4)2:Nd single crystal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. I. Yamada, Materials Processing by Cluster Ion Beams: History, Technology, and Applications (CRC Press, Boca Raton, 2016).

    Google Scholar 

  2. V. N. Popok, I. Barke, E. E. B. Campbell, and K.‑H. Meiwes-Broer, Surf. Sci. Rep. 66, 2011. https://doi.org/10.1016/j.surfrep.2011.05.002

  3. A. E. Ieshkin, A. B. Tolstoguzov, N. G. Korobeishchikov, V. O. Pelenovich, and V. S. Chernysh, Phys.-Usp. 65 (7), 677 (2022). https://doi.org/10.3367/UFNr.2021.06.038994

    Article  Google Scholar 

  4. J. L. S. Lee, S. Ninomiya, J. Matsuo, I. S. Gilmore, M. P. Seah, and A. G. Shard, Anal. Chem. 82, 98 (2010). https://doi.org/10.1021/ac901045q

    Article  CAS  PubMed  Google Scholar 

  5. A. Delcorte, B. J. Garrison, and K. Hamraoui, Surf. Interface Anal. 43, 16 (2011). https://doi.org/10.1002/sia.3405

    Article  CAS  Google Scholar 

  6. Yancey D.F., Reinhardt C. // J. Electron Spectrosc. 231, 104 (2019). https://doi.org/10.1016/j.elspec.2018.01.005

  7. Z. Insepov, I. Yamada, and M. Sosnowski, Mater. Chem. Phys. 54, 234 (1998). https://doi.org/10.1016/S0254-0584(98)00032-7

    Article  CAS  Google Scholar 

  8. E. J. Teo, N. Toyoda, C. Yang, A. A. Bettiol, and J. H. Teng, Appl. Phys. A 117, 719 (2014). https://doi.org/10.1007/s00339-014-8728-1

    Article  CAS  Google Scholar 

  9. N. G. Korobeishchikov, I. V. Nikolaev, and M. A. Roenko, Tech. Phys. Lett. 45 (3), 274 (2019). https://doi.org/10.1134/S1063785019030295

    Article  CAS  Google Scholar 

  10. N. Toyoda, B. Tilakaratne, I. Saleem, and W. K. Chu, Appl. Phys. Rev. 6, 020901 (2019). https://doi.org/10.1063/1.5030500

    Article  CAS  Google Scholar 

  11. X. Zeng, V. Pelenovich, B. Xing, R. Rakhimov, W. Zuo, A. Tolstogouzov, C. Liu, D. Fu, and X. Xiao, Beilstein J. Nanotechnol. 11, 383 (2020). https://doi.org/10.3762/bjnano.11.29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. D. S. Kireev, A. E. Ieshkin, and A. A. Shemukhin, Tech. Phys. Lett. 46, 409 (2020). https://doi.org/10.1134/S1063785020050065

    Article  CAS  Google Scholar 

  13. A. Kirkpatrick, S. Kirkpatrick, M. Walsh, S. Chau, M. Mack, S. Harrison, R. Svrluga, and J. Khoury, Nucl.- Instrum. Methods Phys. Res., Sect. B 307, 281 (2013). https://doi.org/10.1016/j.nimb.2012.11.084

    Article  CAS  Google Scholar 

  14. A. E. Ieshkin, D. S. Kireev, Yu. A. Ermakov, A. S. Trifonov, D. E. Presnov, A. V. Garshev, Yu. V. Anufriev, I. G. Prokhorova, V. A. Krupenin, and V. S. Chernysh, Nucl. Instrum. Methods Phys. Res., Sect. B 421, 27 (2018). https://doi.org/10.1016/j.nimb.2018.02.019

    Article  CAS  Google Scholar 

  15. J. M. Cano-Torres, M. D. Serrano, C. Zaldo, M. Rico, X. Mateos, J. Liu, U. Griebner, V. Petrov, F. J. Valle, M. Galán, and G. Viera, J. Opt. Soc. Am. 23, 2494 (2006). https://doi.org/10.1364/JOSAB.23.002494

    Article  CAS  Google Scholar 

  16. A. Brenier, IEEE J. Quantum Electron. 47, 279 (2011). https://doi.org/10.1088/1612-2011/11/11/115819

    Article  CAS  Google Scholar 

  17. W. Zhang, R. Zhang, S. Yang, R. Wang, L. Na, and R. Hua, Mater. Res. Bull. 122, 110689 (2020). https://doi.org/10.1016/j.materresbull.2019.110689

    Article  CAS  Google Scholar 

  18. R. Chandra Talukder, Md. Zubaer Eibna Halim, T. Waritanant, and A. Major, Opt. Lett. 41, 3810 (2016). https://doi.org/10.1364/OL.41.003810

    Article  CAS  Google Scholar 

  19. P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, V. G. Savitski, S. Calvez, D. Burns, and A. A. Pavlyuk, Opt. Express 17, 23536 (2009). https://doi.org/10.1364/OE.17.023536

    Article  CAS  PubMed  Google Scholar 

  20. P. A. Atanasov, T. Okato, R. I. Tomov, and M. Obara, Thin Solid Films 453–454, 150 (2004). https://doi.org/10.1016/j.tsf.2003.11.089

  21. V. V. Atuchin, V. G. Kesler, N. Yu. Maklakova, L. D. Pokrovsky, and D. V. Sheglov, Eur. Phys. J. B 51, 293 (2006). https://doi.org/10.1140/epjb/e2006-00208-8

    Article  CAS  Google Scholar 

  22. J. Shen, S. Liu, K. Yi, H. He, J. Shao, and Z. Fan, Optik- 116, 288 (2005). https://doi.org/10.1016/j.ijleo.2005.02.002

    Article  Google Scholar 

  23. J. Lee, J. C. Kim, J. Kim, R. K. Singh, A. C. Arjunan, and H. Lee, Thin Solid Films 660, 516 (2018). https://doi.org/10.1016/j.tsf.2018.07.002

    Article  CAS  Google Scholar 

  24. N. G. Korobeishchikov, A. E. Zarvin, V. Z. Madirbaev, and R. G. Sharafutdinov, Plasma Chem. Plasma Proc. 25, 319 (2005). https://doi.org/10.1007/s11090-004-3132-9

    Article  CAS  Google Scholar 

  25. N. G. Korobeishchikov, I. V. Nikolaev, M. A. Roenko, and V. V. Atuchin, Appl. Phys. A 124, 833 (2018). https://doi.org/10.1007/s00339-018-2256-3

    Article  CAS  Google Scholar 

  26. N. G. Korobeishchikov, I. V. Nikolaev, and M. A. Roenko, J. Phys.: Conf. Ser. 1115, 032016 (2018). https://doi.org/10.1088/1742-6596/1115/3/032016

    Article  CAS  Google Scholar 

  27. N. G. Korobeishchikov, I. V. Nikolaev, V. V. Atuchin, I. P. Prosvirin, A. Tolstogouzov, V. Pelenovich, and D. J. Fu, Surf. Interfaces 27, 101520 (2021). https://doi.org/10.1016/j.surfin.2021.101520

    Article  CAS  Google Scholar 

  28. M. P. Seah, J. Phys. Chem. C 117, 12622 (2013). https://doi.org/10.1021/jp402684c

    Article  CAS  Google Scholar 

  29. P. J. Cumpson, J. F. Portoles, A. J. Barlow, and N. Sano, J. Appl. Phys. 114, 124313 (2013). https://doi.org/10.1063/1.4823815

    Article  CAS  Google Scholar 

  30. N. G. Korobeishchikov, I. V. Nikolaev, V. V. Atuchin, I. P. Prosvirin, A. V. Kapishnikov, A. Tolstogouzov, and D. J. Fu, Mater. Res. Bull. 158, 112082 (2023). https://doi.org/10.1016/j.materresbull.2022.112082

    Article  CAS  Google Scholar 

  31. N. G. Korobeishchikov, P. V. Stishenko, I. V. Nikolaev, and V. V. Yakovlev, Plasma Chem. Plasma Proc. 42, 1223 (2022). https://doi.org/10.1007/s11090-022-10286-8

    Article  CAS  Google Scholar 

  32. G. Greczynski and L. Hultman, Appl. Surf. Sci. 542, 148599 (2021). https://doi.org/10.1016/j.apsusc.2020.148599

    Article  CAS  Google Scholar 

  33. L. Macalik, S. M. Kaczmarek, G. Leniec, J. Hanuza, A. Pietraszko, T. Bodziony, and T. Skibiński, Sci. Jet 4, 122 (2015).

    Google Scholar 

Download references

Funding

The study was financially supported by the Russian Science Foundation (grant no. 21-19-00046) in terms of sample preparation and treatment, and the Ministry of Science and Higher Education of the Russian Federation (grant FSUS-2020-0039) in terms of sample analysis using equipment of the Center for Collective Use “Applied Physics” of Novosibirsk State University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. V. Nikolaev or N. G. Korobeishchikov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by S. Rostovtseva

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikolaev, I.V., Korobeishchikov, N.G. Features of the Cluster-Ion Treatment of the Surface of a KGd(WO4)2:Nd Single Crystal. J. Surf. Investig. 18, 313–317 (2024). https://doi.org/10.1134/S1027451024020137

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451024020137

Keywords:

Navigation