Skip to main content
Log in

Interaction of a Titanium Atom with the Surface of Perfect and Defective Carbon Nanotubes

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The dispersion of metal atoms across the surface of 1D and 2D carbon systems is the most accessible method for controlling their properties, which are attractive for various applications in electronics, energy, and catalysis. This work explores the features of the interaction between titanium atoms and the surface of carbon nanotubes using ab initio computer-simulation methods based on density functional theory. The investigation focuses on the peculiarities induced by the presence of various types of structural defects on these surfaces. To conduct the study, we select (7, 7) and (11, 0) nanotubes with similar diameters (≈1 nm) but with different types of conductivity: metallic and semiconductor type, respectively. Three types of defects are investigated: single vacancy, double vacancy, and topological defect. Two possible orientations of each type of defect relative to the axis of the tube are considered. The primarily used basis set is the atomic orbital basis (SIESTA package), and the plane-wave basis set (VASP package) is also employed in some test calculations. Computational experiments show that the binding energy of Ti atoms to a defect-free nanotube is always lower than that to defective nanotubes, regardless of the approximation used for the exchange-correlation functional (LDA or GGA). The binding energy values predicted in the LDA approximation are noticeably higher than those in the GGA approximation (up to ~15% for the (7, 7) tube and up to ~50% for the (11, 0) tube). Strongest binding occurs when titanium is adsorbed on a nanotube with a single vacancy; the resulting configuration can be considered as a defect where one carbon atom is replaced by a titanium atom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. R. Maheswaran and B. P. Shanmugavel, J. Electron. Mater. 51 (6), 2786 (2022). https://doi.org./10.1007/s11664-022-09516-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. S. H. So, S. J. Sung, S. J. Yang, and C. R. Park, Electron. Mater. Lett. 19 (1), 1 (2023). https://doi.org./10.1007/s13391-022-00368-2

    Article  CAS  Google Scholar 

  3. A. T. Mulatu, K. N. Nigussa, and L. D. Deja, Opt. Mater. 134, 113094 (2022). https://doi.org./10.1016/j.optmat.2022.113094

    Article  CAS  Google Scholar 

  4. J. F. N. Dethan and V. Swamy, Int. J. Hydrogen Energy 47 (59), 24916 (2022). https://doi.org./10.1016/j.ijhydene.2022.05.240

    Article  CAS  Google Scholar 

  5. C. Daulbayev, B. Lesbayev, B. Bakbolat, B. Kaidar, F. Sultanov, M. Yeleuov, G. Ustayeva, and N. Rakhymzhan, South Afr. J. Chem. Eng. 39, 52 (2022). https://doi.org./10.1016/j.sajce.2021.11.008

    Google Scholar 

  6. Y. Zhang and H. Dai, Appl. Phys. Lett. 77 (19), 3015 (2000). https://doi.org/10.1063/1.1324731

    Article  CAS  Google Scholar 

  7. E. Durgun, S. Dag, V. M. K. Bagci, O. Gulseren, T. Yildirim, and S. Ciraci, Phys. Rev. B 67, 201401 (2003). https://doi.org./10.1103/PhysRevB.67.201401

    Article  Google Scholar 

  8. M. Liu, A. Kutana, Y. Liu, G. Cui, C. Zhang, N. Dong, C. Chen, and P. Han, J. Phys. Chem. Lett. 5 (7), 1225 (2014). https://doi.org./10.1021/jz500199d

    Article  CAS  PubMed  Google Scholar 

  9. S. A. Shevlin and Z. X. Guo, J. Phys. Chem. C 112 (44), 17456 (2008). https://doi.org./10.1021/jp800074n

    Article  CAS  Google Scholar 

  10. H. Lee, J. Ihm, M. L. Cohen, and S. G. Louie, Phys. Rev. B 80 (11), 115412 (2009). https://doi.org./10.1103/PhysRevB.80.115412

    Article  Google Scholar 

  11. S. Ghosh and V. Padmanabhan, Diamond Relat. Mater. 77, 46 (2017). https://doi.org./10.1016/j.diamond.2017.05.013

  12. L. Yang, L. L. Yu, H. W. Wei, W. Q. Li, X. Zhou, and W. Q. Tian, Int. J. Hydrogen Energy 44 (5), 2960 (2019). https://doi.org./10.1016/j.ijhydene.2018.12.028

    Article  CAS  Google Scholar 

  13. C. Soldano, Prog. Mater. Sci. 69, 183 (2015). https://doi.org./10.1016/j.pmatsci.2014.11.001

    Article  CAS  Google Scholar 

  14. S. A. Sozykin, V. P. Beskachko, and G. P. Vyatkin, Mater. Sci. Forum 843, 132 (2016). https://doi.org./10.4028/www.scientific.net/MSF.843.132

    Article  Google Scholar 

  15. J. M. Soler, E. Artacho, J. D. Gale, A. Garc, J. Junquera, P. Ordej, and S. Daniel, J. Phys.: Condens. Matter 14 (11), 2745 (2002). https://doi.org./10.1088/0953-8984/14/11/302

    CAS  Google Scholar 

  16. E. Anikina and V. Beskachko, Bull. South Ural State Univ., Ser. Math. Mech. Phys. 12 (1), 55 (2020). https://doi.org./10.14529/mmph200107

  17. S. A. Sozykin and V. P. Beskachko, Lett. Mater. 12 (1), 32 (2022). https://doi.org./10.22226/2410-3535-2022-1-32-36

  18. T. Yildirim and S. Ciraci, Phys. Rev. Lett. 94 (17), 175501 (2005). https://doi.org./10.1103/PhysRevLett.94.175501

    Article  CAS  PubMed  Google Scholar 

  19. H. Omidvar, F. K. Mirzaei, M. H. Rahimi, and Z. Sadeghian, New Carbon Mater. 27 (6), 401 (2012). https://doi.org./10.1016/S1872-5805(12)60023-7

    Article  CAS  Google Scholar 

  20. D. Juhee, M. Vikram, S. Alok, and C. Brahmananda, Energy Storage 5 (1), e391 (2023). https://doi.org./10.1002/est2.391

  21. G. Kresse and J. Furthmüller, Phys. Rev. B 54 (16), 11169 (1996). https://doi.org./10.1103/PhysRevB.54.11169

    Article  CAS  Google Scholar 

  22. A. Felten, I. Suarez-Martinez, X. Ke, G. V. Tendeloo, J. Ghijsen, J. J. Pireaux, W. Drube, C. Bittencourt, and C. P. Ewels, ChemPhysChem 10 (11), 1799 (2009). https://doi.org./10.1002/cphc.200900193

    Article  CAS  PubMed  Google Scholar 

  23. C. K. Yang, J. Zhao, and J. P. Lu, Phys. Rev. B 66 (4), 414031 (2002). https://doi.org./10.1103/PhysRevB.66.041403

    Google Scholar 

Download references

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation (grant no. FENU-2023-0011 (2023011GZ)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Sozykin.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by O. Zhukova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sozykin, S.A., Beskachko, V.P. Interaction of a Titanium Atom with the Surface of Perfect and Defective Carbon Nanotubes. J. Surf. Investig. 18, 142–149 (2024). https://doi.org/10.1134/S1027451024010361

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451024010361

Keywords:

Navigation