Skip to main content
Log in

Formation of Radiation Defects in Wide-Band Semiconductors Based on Gallium (Ga2O3, GaN) under Proton Irradiation

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

Using the mathematical modeling of a displacement cascade in two wide-gap semiconductors based on gallium, gallium oxide (Ga2O3), and gallium nitride (GaN), the features of the generation of Frenkel pairs during the scattering of protons with energies of 8 and 15 MeV are considered. The number of displacements created not only by primary knocked-out atoms, but also by recoil atoms generated in displacement cascades is calculated for the first time. Calculations show that under the proton irradiation of Ga2O3, for example, the fraction of vacancies in the oxygen sublattice created directly by protons is only 12%. The remaining 88% are created by recoil atoms in cascade processes. For the gallium sublattice, these fractions are 25 and 75%, respectively. Therefore, the processes of compensating the conductivity of GaN and Ga2O3 observed under proton irradiation will be determined by deep centers created not by primary knocked-out atoms, but by recoil atoms formed in displacement cascades. A comparison with experimental data is made, and the fraction of Frenkel pairs dissociating during irradiation is estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. V. Kozlovski and V. Abrosimova, Radiation Defect Engineering, Selected Topics in Electronics and Systems, Vol. 37 (World Scientific, Singapore, 2005).

  2. C. Claeys and E. Simoen, Radiation Effects in Advanced Semiconductor Materials and Devices (Springer, Berlin, 2002).

    Book  Google Scholar 

  3. N. B. Strokan, A. M. Ivanov, N. S. Savkina, et al., Semiconductors 38, 807 (2004).

    Article  CAS  Google Scholar 

  4. V. A. J. van Lint, Mechanisms of Radiation Effects in Electronic Materials (Wiley, New York, 1980).

    Google Scholar 

  5. V. V. Kozlovski, A. E. Vasil’ev, and A. A. Lebedev, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 10, 693 (2016).

    Article  CAS  Google Scholar 

  6. V. V. Kozlovskii, A. E. Vasil’ev, P. A. Karasev, and A. A. Lebedev, Semiconductors 52, 310 (2018).

    Article  Google Scholar 

  7. SRIM-2013 Software Package. http://www.srim.org.

  8. J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Matter (Pergamon, New York, 1985).

    Book  Google Scholar 

  9. J. W. Steeds, F. Carosella, G. A. Evans, et al., Mater. Sci. Forum 353–356, 381 (2001).

    Article  Google Scholar 

  10. J. W. Steeds, G. A. Evans, S. Furkert, et al., Diamond Relat. Mater. 11, 1923 (2002).

    Article  CAS  Google Scholar 

  11. A. A. Lebedev, Radiation Effects in Silicon Carbide (Mater. Res. Forum, Millersville, 2017).

  12. D. Pons and J. C. Bourgoin, J. Phys. C 18, 3839 (1985).

    Article  CAS  Google Scholar 

  13. A. L. Barry, R. Maxseiner, R. Wojcik, et al., IEEE Trans. Nucl. Sci. 37, 1726 (1990).

    Article  CAS  Google Scholar 

  14. D. C. Look, D. C. Reynolds, J. W. Hemsky, et al., Phys. Rev. Lett. 79, 2273 (1997).

    Article  CAS  Google Scholar 

  15. A. Ionascut-Nedelcescu, C. Carlone, A. Houdayer, H. J. von Bardeleben, J.-L. Cantin, and S. Raymond, IEEE Trans. Nucl. Sci. 49, 2733 (2002).

    Article  CAS  Google Scholar 

  16. V. V. Emtsev, V. Yu. Davydov, K. V. Emtsev, D. S. Poloskin, G. A. Oganesyan, V. V. Kozlovski, and E. E. Haller, Phys. Status Solidi C, No. 2, 601 (2003).

    Article  Google Scholar 

  17. S. J. Pearton, F. Ren, E. Patrick, M. E. Law, and A. Y. Polyakov, ECS J. Solid State Sci. Technol. 5, Q35 (2016).

    Article  CAS  Google Scholar 

  18. H. J. Bardeleben, S. Zhou, U. Gerstmann, et al., APL Mater. 7, 022521 (2019).

    Article  Google Scholar 

  19. J. Kim, S. J. Pearton, C. Fares, et al., J. Mater. Chem. C 7, 10 (2019).

    Article  CAS  Google Scholar 

  20. E. Farzana, M. F. Chaiken, T. E. Blue, et al., APL Mater. 7, 022502 (2019).

    Article  Google Scholar 

  21. A. A. Lebedev, S. V. Belov, M. G. Mynbaeva, et al., Semiconductors 49, 1341 (2015).

    Article  CAS  Google Scholar 

  22. A. A. Lebedev, S. V. Belov, M. G. Mynbayeva, et al., Mater. Sci. Forum 858, 1186 (2016).

    Article  Google Scholar 

  23. J. Yang, Z. Chen, F. Ren, et al., J. Vac. Sci. Technol. B 36, 011206 (2018).

    Article  Google Scholar 

  24. A. Y. Polyakov, N. B. Smirnov, I. V. Shchemerov, et al., Appl. Phys. Lett. 113, 092102 (2018).

    Article  Google Scholar 

  25. A. P. Karmarkar, B. D. White, D. Buttari, D. M. Fleetwood, R. D. Schrimpf, R. A. Weller, L. J. Brillson, and U. K. Mishra, IEEE Trans. Nucl. Sci. 52, 2239 (2005).

    Article  CAS  Google Scholar 

  26. F. D. Auret, S. A. Goodman, M. Hayes, M. J. Legodi, S. S. Hullavarad, E. Friedland, B. Beaumont, and P. Gibart, Nucl. Instrum. Methods Phys. Res., Sect. B 175–177, 292 (2001).

    Google Scholar 

  27. V. V. Kozlovskii, A. E. Vasil’ev, V. V. Emtsev, G. A. Oganesyan, and A. A. Lebedev, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 13, 1155 (2019).

    Article  Google Scholar 

  28. S. J. Pearton, F. Ren, and M. Mastro, Gallium Oxide: Technology, Devices and Applications (Elsevier, Amsterdam, 2019).

    Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation (project no. 22-12-00003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. V. Kozlovski, A. E. Vasil’ev, A. A. Lebedev, E. E. Zhurkin, M. E. Levinshtein or A. M. Strelchuk.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozlovski, V.V., Vasil’ev, A.E., Lebedev, A.A. et al. Formation of Radiation Defects in Wide-Band Semiconductors Based on Gallium (Ga2O3, GaN) under Proton Irradiation. J. Surf. Investig. 17, 1372–1377 (2023). https://doi.org/10.1134/S1027451023060319

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451023060319

Keywords:

Navigation