Skip to main content
Log in

Silicon Microstrip Detector for Studying Fast Processes on a Synchrotron Beam

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

In this paper, we describe the current state of development of a prototype detector for the study of fast processes (DIMEX) based on a silicon microstrip sensor. The silicon microstrip sensor is made of n-type silicon with p-type implants in the form of strips. Aluminum contacts with microwelding pads at the ends are applied to the strips along the entire length. The signals from the strips are read using a DMXS6A integrated circuit specially designed for this project, which contains six recording electronic channels with a dark-current compensation circuit at the input, four integrators, 32 analog memory cells, and an analog shift register. Each sensor strip is connected to the guard ring through a 400-Ω resistor and to the recording-channel input through a 100-kΩ resistor. This resistive divider at the input of the recording channel makes it possible to adapt the dynamic range of the recording microcircuit integrator to the full range of photon-flux changes in synchrotron-radiation output channel no. 8 of the VEPP-4M storage ring equipped with a nine-pole wiggler with a field of 1.95 T as the source of synchrotron radiation. Measurements of the dynamic range of the DIMEX-Si prototype show that the maximal flux that can be recorded in the linear mode exceeds 105 photons/channel from each electron bunch in the storage ring. The ability of the detector to detect signals from bunches following after 55 ns in the multi-bunch mode, which simulates the operation of the 4+-generation synchrotron-radiation source Siberian Circular Photon Source (SKIF) under construction in the Novosibirsk region, on which such a detector is planned to be used, is also demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. B. P. Tolochko, A. V. Kosov, O. V. Evdokov, I. L. Zhogin, K. A. Ten, E. R. Pruuel, L. I. Shekchtman, V. M. Aulchenko, V. V. Zhulanov, P. F. Piminov, V. P. Nazmov, K. V. Zolotarev, and G. N. Kulipanov, Phys. Procedia 84, 427 (2016). https://www.doi.org/10.1016/j.phpro.2016.11.072

    Article  CAS  Google Scholar 

  2. P. A. Piminov, G. N. Baranov, A. V. Bogomyagkov, D. E. Berkaev, V. M. Borin, V. L. Dorokhov, S. E. Karnaev, V. A. Kiselev, E. B. Levichev, O. I. Meshkov, S. I. Mishnev, S. A. Nikitin, I. B. Nikolaev, S. V. Sinyatkin, P. D. Vobly, K. V. Zolotarev, and A. N. Zhuravlev, Phys. Procedia 84, 19 (2016). https://www.doi.org/10.1016/j.phpro.2016.11.005

    Article  CAS  Google Scholar 

  3. V. M. Aulchenko, V. V. Zhulanov, G. N. Kulipanov, K. A. Ten, B. P. Tolochko, and L. I. Shekhtman, Phys.—Usp. 61, 515 (2018). https://www.doi.org/10.3367/UFNe.2018.01.038339

  4. V. Aulchenko, P. Papushev, S. Ponomarev, L. Shekhtman, and V. Zhulanov, J. Synchrotron Radiat. 10, 361 (2003). https://www.doi.org/10.1107/S0909049503009142

    Article  CAS  Google Scholar 

  5. V. Aulchenko, O. Evdokov, S. Ponomarev, L. Shekhtman, K. Ten, B. Tolochko, I. Zhogin, and V. Zhulanov, Nucl. Instrum. Methods Phys. Res., Sect. A 513, 388 (2003). https://www.doi.org/10.1016/j.nima.2003.08.067

  6. A. Aulchenko, V. Zhulanov, L. Shekhtman, B. Tolochko, I. Zhogin, O. Evdokov, K. Ten, Nucl. Instrum. Methods Phys. Res., Sect. A 543, 350 (2005). https://www.doi.org/10.1016/j.nima.2005.01.254

  7. V. M. Aulchenko, O. V. Evdokov, L. I. Shekhtman, K. A. Ten, B. P. Tolochko, I. L. Zhogin, and V. V. Zhulanov, J. Instrum. 3, P05005 (2008). https://www.doi.org/10.1088/1748-0221/3/05/P05005

    Google Scholar 

  8. V. M. Aulchenko, O. V. Evdokov, L. I. Shekhtman, K. A. Ten, B. P. Tolochko, I. L. Zhogin, V. V. Zhulanov, Nucl. Instrum. Methods Phys. Res., Sect. A 603, 73 (2009). https://www.doi.org/10.1016/j.nima.2008.12.163

  9. V. M. Aulchenko, S. E. Baru, O. V. Evdokov, V. V. Leonov, P. A. Papushev, V. V. Porosev, G. A. Savinov, M. R. Sharafutdinov, L. I. Shekhtman, K. A. Ten, V. M. Titov, B. P. Tolochko, A. V. Vasiljev, and I. L. Zhogin, Nucl. Instrum. Methods Phys. Res., Sect. A 623, 600 (2010). https://www.doi.org/10.1016/j.nima.2010.03.083

  10. K. A. Ten, E. R. Pruuel, L. A. Merzhievsky, L. A. Lukjanchikov, B. P. Tolochko, I. L. Zhogin, and L. I. Shekhtman, Nucl. Instrum. Methods Phys. Res., Sect. A 603, 160 (2009). https://www.doi.org/10.1016/j.nima.2008.12.192

  11. V. M. Titov, E. R. Pruuel, K. A. Ten, L. A. Luk’yanchikov, L. A. Merzhievskii, B. P. Tolochko, V. V. Zhulanov, and L. I. Shekhtman, Combust., Explos. Shock Waves 47, 615 (2011). https://www.doi.org/10.1134/S0010508211060013

    Article  Google Scholar 

  12. E. R. Pruuel, K. A. Ten, B. P. Tolochko, L. A. Merzhievskii, L. A. Luk’yanchikov, V. M. Aul’chenko, V. V. Zhulanov, L. I. Shekhtman, and V. M. Titov, Dokl. Phys. 58, 24 (2013). https://www.doi.org/10.1134/S1028335813010035

    Article  CAS  Google Scholar 

  13. K. A. Ten, E. R. Pruuel, A. O. Kashkarov, I. A. Rubtsov, M. V. Antipov, A. B. Georgievskaya, A. L. Mikhailov, I. A. Spirin, V. M. Aulchenko, L. I. Shekhtman, V. V. Zhulanov, and B. P. Tolochko, Combust., Explos. Shock Waves 54, 606 (2018). https://www.doi.org/10.1134/S0010508218050143

    Article  Google Scholar 

  14. L. I. Shekhtmana, V. M. Aulchenko, V. N. Kudryavtsev, V. D. Kutovenko, V. M. Titov, V. V. Zhulanova, E. L. Pruuel, K. A. Ten, and B. P. Tolochko, Phys. Procedia 84, 189 (2016). https://www.doi.org/10.1016/j.phpro.2016.11.033

    Article  Google Scholar 

  15. V. Aulchenko, E. Pruuel, L. Shekhtman, K. Ten, B. Tolochko, and V. Zhulanov, Nucl. Instrum. Methods Phys. Res., Sect. A 845, 169 (2017). https://www.doi.org/10.1016/j.nima.2016.05.096

  16. L. I. Shekhtman, V. M. Aulchenko, V. V. Zhulanov, and D. V. Kudashkin, Bull. Russ. Acad. Sci.: Phys. 83, 220 (2019). https://www.doi.org/10.3103/S1062873819020254

  17. L. Shekhtman, V. Aulchenko, V. Kudryavtsev, V. Kutovenko, V. Titov, and V. Zhulanov, AIP Conf. Proc. 2299, 050004 (2020). https://www.doi.org/10.1063/5.0030393

  18. L. Shekhtman, V. Aulchenko, D. Kudashkin, V. Kudryavtsev, E. Pruuel, K. Ten, B. Tolochko, and V. Zhulanov, Nucl. Instrum. Methods Phys. Res., Sect. A 958, 162655 (2020). https://www.doi.org/10.1016/j.nima.2019.162655

  19. V. M. Aulchenko, L. I. Shekhtman, and V. V. Zhulanov, Optoelectron., Instrum. Data Process. 56, 81 (2020). https://www.doi.org/10.3103/S8756699020010112

    Article  Google Scholar 

Download references

Funding

The work on measuring the characteristics of the DIMEX-Si detector was partially supported by the Government of the Russian Federation, agreement no. 075-15-2022-1132 in accordance with Decree 220 of April 9, 2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. I. Shekhtman.

Ethics declarations

The authors state that they have no conflicts of interest.

Additional information

Translated by A. Ivanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aulchenko, V.M., Glushak, A.A., Zhulanov, V.V. et al. Silicon Microstrip Detector for Studying Fast Processes on a Synchrotron Beam. J. Surf. Investig. 17, 1356–1363 (2023). https://doi.org/10.1134/S1027451023060253

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451023060253

Keywords:

Navigation