Skip to main content
Log in

Superconducting Solenoid (7 T) Indirectly Cooled by Cryocoolers for THz Radiation

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The results of testing and performance characteristics of an indirectly cryocooled superconducting solenoid to be used at the tehrahertz (THz) spectroscopy experimental station of the free-electron laser at the Institute of Nuclear Physics are presented. The superconducting solenoid with a winding diameter of 102 mm and a length of 0.5 m is designed for a magnetic field of 6.5 T. A warm diameter of 80 mm is available for THz spectroscopy experiments. A superconducting wire Cu/NbTi = 1.4 is used. The design implements passive protection methods due to sectioning and secondary connected circuits in case of a sudden quench. The required field uniformity of 0.5% is ensured by using an iron yoke and additional side windings. The cryogenics of the solenoid is based on two Sumitomo HI cryocoolers. The solenoid and iron yoke are cooled by the second stage of the cryocooler via copper plates. The manufacturing technology of the solenoid is described in detail. The solenoid is tested in a liquid-helium bath and in its own cryostat. Its characteristics meet the requirements of the experimental station. The obtained field of 7.3 T is greater than the designed one due to overcooling up to 3.6 K. The magnetic field is measured both in a bath cryostat and in the designed cryostat; the results corresponded to the design calculations. The solenoid cooling time is 13 days. The quench happened only twice, at 5.6 and 7.3 T.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. V. Kubarev, E. Chesnokov, and P. Koshlyakov, in Proc. 37th Int. Conf. on Infrared, Millimeter and Terahertz Waves 2012 (Wollongong, 2012), p. Thu-C-2-4.

  2. V. V. Kubarev, E. N. Chesnokov, and P. V. Koshlyakov, in Proc. 38th Int. Conf. on Infrared, Millimeter and Terahertz Waves 2013 (Mainz on the Rhine, 2013), p. Tu5-5.

  3. E. N. Chesnokov, V. V. Kubarev, and P. V. Koshlyakov, Appl. Phys. Lett. 105, 261107 (2014).

    Article  Google Scholar 

  4. E. N. Chesnokov, V. V. Kubarev, P. V. Koshlyakov, and G. N. Kulipanov, Appl. Phys. Lett. 101, 131109 (2012).

    Article  Google Scholar 

  5. E. N. Chesnokov, V. V. Kubarev, P. V. Koshlyakov, and G. N. Kulipanov, Laser Phys. Lett. 10, 055701 (2013).

    Article  CAS  Google Scholar 

  6. E. N. Chesnokov, V. V. Kubarev, and P. V. Koshlyakov, Laser Phys. Lett. 18, 085205 (2021).

    Article  CAS  Google Scholar 

  7. E. N. Chesnokov, V. V. Kubarev, L. N. Krasnoperov, and P. V. Koshlyakov, Phys. Chem. Chem. Phys. 22, 20248 (2020).

    Article  CAS  Google Scholar 

  8. A. V. Bragin, S. V. Khrushchev, V. V. Kubarev, N. A. Mezencev, V. M. Tsukanov, G. I. Sozinov, and V. A. Shkaruba, Phys. Procedia 84, 82 (2016).

    Article  CAS  Google Scholar 

  9. S. Khrushchev, N. Mezentsev, V. Lev, V. Shkaruba, V. Syrovatin, and V. Tsukanov, in Proc. 5th Int. Particle Accelerator Conference (Dresden, 2014), p. 4103. https://doi.org/10.18429/JACoW-IPAC2014-WEPRI091

  10. A. V. Bragin, A. Bernhard, S. Casalbuoni, L. G. Fajardo, P. Ferracin, A. Grau, Ye. A. Gusev, S. Hillenbrand, S. V. Khrushchev, I. V. Poletaev, V. A. Shkaruba, D. Schoerling, V. M. Syrovatin, O. A. Tarasenko, V. M. Tsukanov, A. A. Volkov, K. V. Zolotarev, and N. A. Mezentsev, IEEE Trans. App. Supercond. 26, 4102504 (2016).

    Article  Google Scholar 

  11. http://www.ansys.com.

  12. D. Schoerling, F. Antoniou, A. Bernhard, A. Bragin, M. Karppinen, R. Maccaferri, N. Mezentsev, Y. Papaphilippou, P. Peiffer, R. Rossmanith, G. Rumolo, S. Russenschuck, P. Vobly, and K. Zolotarev, Phys. Rev. Accel. Beams 15, 042401 (2012).

    Article  Google Scholar 

  13. M. A. Green, Cryogenics 24, 3 (1984).

    Article  CAS  Google Scholar 

  14. M. A. Green, Cryogenics 24, 659 (1984).

    Article  Google Scholar 

  15. A. V. Bragin, L. M. Barkov, N. S. Bashtovoj, A. A. Grebenuk, S. V. Karpov, V. S. Okhapkin, S. G. Pivovarov, Yu. S. Popov, A. A. Ruban, and B. I. Khazin, IEEE Trans. Appl. Supercond. 20, 2336 (2010).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We express our sincere gratitude to I. Gurgutsa, and V. Kazakov for assembling the cryostat and improving its design, G. Verkhovod and Yu. Toykichev for assembling the solenoid from the protection system and A. Pozdeev for manufacturing the solenoid.

Funding

The work was carried out under agreement no. 075-15-2021-1359 with the Ministry of Science and Higher Education of the Russian Federation and partly with the financial support of the Ministry of Science and Higher Education of the Russian Federation within the framework of the state task for the Institute of Solid State Chemistry and Mechanochemistry of the Siberian Branch of the Russian Academy of Sciences (project no. FWUS-2021-0004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Bragin.

Ethics declarations

The authors state that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bragin, A.V., Volkov, A.A., Kubarev, V.V. et al. Superconducting Solenoid (7 T) Indirectly Cooled by Cryocoolers for THz Radiation. J. Surf. Investig. 17, 1248–1252 (2023). https://doi.org/10.1134/S1027451023060071

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451023060071

Keywords:

Navigation