Skip to main content
Log in

ZrO2/Cr Multilayer Coating for the Protection of E110 Zirconium Alloy from High Temperatures

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

Cr coatings with a multilayer barrier composed of alternating ZrO2 and Cr layers with an individual thickness of each layer of 50 and 250 nm are deposited onto substrates made from E110 zirconium alloy using magnetron sputtering. The protective properties of the ZrO2/Cr multilayer coating on E110 zirconium alloy are studied under high-temperature oxidation in air at a temperature of 1100°C for 10, 20, 30 and 40 min. A lower rate of change in the weight gain of the samples with ZrO2/Cr coatings is found in comparison with samples coated by chromium during long-term oxidation tests. Diffraction measurements of the samples are carried out under linear heating (50°С/min) in the range of temperatures 25–1250°С and subsequent isothermal treatment for 20 min in a vacuum chamber with a residual pressure of 10–3 Pa using in situ synchrotron X-ray diffraction. It is found that the mutual diffusion of Cr–Zr at the interface between the protective coating with the multilayer barrier composed of alternating ZrO2 and Cr layers and zirconium alloy can be slowed down. This results in the retention of a high content of the α-Cr phase in the coating and, as a result, in an increase in the duration of the protective state of the E110 alloy under high-temperature oxidation in air.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. J. C. Brachet, E. Rouesne, T. Guilbert, et al., Corros. Sci. 167, 108537 (2020). https://doi.org/10.1016/j.corsci.2020.108537

    Article  CAS  Google Scholar 

  2. J. Krejci, J. Kabatova, F. Manoch, et al., Nucl. Eng. Technol. 52, 597 (2020). https://doi.org/10.1016/j.net.2019.08.015

    Article  CAS  Google Scholar 

  3. J. H. Park, H.-G. Kim, J. Park, et al., Surf. Coat. Technol. 280, 256 (2015). https://doi.org/10.1016/j.surfcoat.2015.09.022

    Article  CAS  Google Scholar 

  4. H. Chen, X. Wang, and R. Zhang, Coatings 10, 808 (2020). https://doi.org/10.3390/coatings100908085

    Article  CAS  Google Scholar 

  5. C. Tang, M. Stueber, H. J. Seifert, and M. Steinbrueck, Corros. Rev. 35, 141 (2017). https://doi.org/10.1515/corrrev-2017-0010

    Article  CAS  Google Scholar 

  6. R. Sh. Isaev, D. A. Safonov, P. S. Dzhumaev, and E. L. Korenevskiy, Tsvet. Met. 10, 27 (2022). https://doi.org/10.17580/tsm.2022.10.04

    Article  CAS  Google Scholar 

  7. J. Yang, U. Stegmaier, C. Tang, et al., J. Nucl. Mater. 547, 152806 (2021). https://doi.org/10.1016/j.jnucmat.2021.152806

    Article  CAS  Google Scholar 

  8. Y. Wang, W. Zhou, Q. Wen, et al., Surf. Coat. Technol. 344, 141 (2018). https://doi.org/10.1016/j.surfcoat.2018.03.016

    Article  CAS  Google Scholar 

  9. J. C. Brachet and I. Idarraga-Trujillo, J. Nucl. Mater. 517, 268 (2019). https://doi.org/10.1016/j.jnucmat.2019.02.018

    Article  CAS  Google Scholar 

  10. C. Xu, X. Wang, Q. Zhouet, et al., Mater. Character. 197, 112701, (2023). https://doiorg/101016/ jmatchar2023112701.

  11. X. Wang, Y. Liao, Ch. Xu, et al., J. Alloys Compd. 883, 160798 (2021). https://doi.org/10.1016/j.jallcom.2021.160798

    Article  CAS  Google Scholar 

  12. X. Wang, H. Guan, Y. Liaoet, et al., Corros. Sci. 187, 109494 (2021). https://doi.org/10.1016/j.corsci.2021.109494

    Article  CAS  Google Scholar 

  13. J. Musil, RSC Adv. 74, 60482 (2015). https://wwwdoiorg/101039/C5RA09586G

  14. V. Belous, J. Nucl. Mater. 465, 400 (2015). https://doi.org/10.1016/j.jnucmat.2015.06.016

    Article  CAS  Google Scholar 

  15. C. Meng, L. Yang, Y. Wu, et al., J. Nucl. Mater. 515, 354 (2019). https://doi.org/10.1016/j.jnucmat.2019.01.006

    Article  CAS  Google Scholar 

  16. D. V. Sidelev, S. E. Ruchkin, M. S. Syrtanov, et al., Surf. Coat. Technol. 433, 128131 (2022). https://doi.org/10.1016/j.surfcoat.2022.128131

    Article  CAS  Google Scholar 

  17. Y. Xiang, Ch. Liu, Zh. Li, et al., Surf. Coat. Technol. 429, 127947 (2022). https://doi.org/10.1016/j.surfcoat.2021.127947

    Article  CAS  Google Scholar 

  18. D. V. Sidelev, M. S. Syrtanov, S. E. Ruchkin, et al., Coatings 11, 227 (2021). https://doi.org/10.3390/coatings11020227

    Article  CAS  Google Scholar 

  19. W. H. Pechin, D. E. Williams, and W. L. Larsen, ASM Trans. 57, 464 (1964).

    CAS  Google Scholar 

  20. E. B. Kashkarov, D. V. Sidelev, N. S. Pushilina, et al., Corros. Sci. 203, 110359 (2022). https://doi.org/10.1016/j.corsci.2022.110359

    Article  CAS  Google Scholar 

Download references

Funding

The study was supported by the Russian Foundation for Basic Research and Rosatom State Corporation within the framework of scientific project no. 20-21-00037. The work was carried out at the Center for Collective Use “Siberian Center of Synchrotron and Terahertz Radiation” on the basis of the “VEPP-4–VEPP-2000” complex at the Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Sidelev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sidelev, D.V., Ruchkin, S.E., Syrtanov, M.S. et al. ZrO2/Cr Multilayer Coating for the Protection of E110 Zirconium Alloy from High Temperatures. J. Surf. Investig. 17, 966–970 (2023). https://doi.org/10.1134/S1027451023050105

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451023050105

Keywords:

Navigation