Skip to main content
Log in

Changes in the Energy of Surface Adsorption Sites of ZnO Doped with Sn

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

Nowadays an important task is the development of nanostructures of the Zn–Sn–O ternary oxide system, which are of practical interest for various fields, including gas sensors, photocatalysts, lithium-ion batteries, and solar cells. Zinc-stannate nanowires are formed by the hydrothermal treatment of preliminarily synthesized zinc-oxide nanowires in a solution of potassium stannate and carbamide. Using scanning electron microscopy and backscattered electron diffraction, the samples are found to have the Zn2SnO4 structure, and their geometric dimensions do not change compared to the initial zinc-oxide nanowires. The diameter of the obtained structures is about 300 nm, and the length is about 2 mm. According to X-ray photoelectron spectroscopy data, as a result of hydrothermal treatment, the surface structure changes and tin atoms are incorporated into the crystal structure of zinc oxide. The study of the gas-sensing properties of Zn2SnO4 layers shows that they are more efficient in detecting isopropyl alcohol vapor compared to the initial zinc-oxide nanowires. Zn2SnO4 layers allow the detection of isopropyl alcohol vapor at temperatures of about 150°C. The sensor signal with respect to 1000 ppm C3H7OH is 3.79.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. B. F. Ormont, Introduction to Physical Chemistry and Crystal Chemistry of Semiconductors(Vysshaya Shkola, Moscow, 1982) [in Russian].

    Google Scholar 

  2. M. M. Sychev, T. S. Minakova, Yu. G. Slizhov, and O. A. Shilova, Acid-Base Characteristics of the Surface of Solids and Control of the Properties of Materials and Composites (Khimizdat, St. Petersburg, 2016) [in Russian].

    Google Scholar 

  3. A. P. Nechiporenko, Donor–Acceptor Properties of the Surface of Solid-Phase Systems: Indicator Method (Lan’, St. Petersburg, 2017) [in Russian].

  4. I. Arora and P. Kumar, J. Alloys Compd. 845, 156316 (2020). https://doi.org/10.1016/j.jallcom.2020.156316

    Article  CAS  Google Scholar 

  5. K. Deevi, V. K. Reddy, and I. Reddy, Mater. Lett. 283, 128848 (2021). https://doi.org/10.1016/j.matlet.2020.128848

    Article  CAS  Google Scholar 

  6. P. Santhoshkumar, K. Prasanna, Y. N. Jo, S. H. Kang, Y. C. Joe, and C. W. Lee, Appl. Surf Sci. 449, 514 (2018). https://doi.org/10.1016/j.apsusc.2018.01.120

    Article  CAS  Google Scholar 

  7. E. A. Levkevich, A. I. Maksimov, S. A. Kirillova, S. S. Nalimova, V. M. Kondrat’ev, and A. A. Semenova, in Proc. 2020 IEEE Conf. of Russian Young Researchers in Electrical and Electronic Engineering, EIConRus 2020 (St. Petersburg, 2020), p. 984. https://doi.org/10.1109/EIConRus49466.2020.9039451

  8. S. Jain, A. P. Shah, and N. G. Shimpi, Nano-Struct. Nano-Objects 21, 100410 (2020). https://doi.org/10.1016/j.nanoso.2019.100410

    Article  CAS  Google Scholar 

  9. S. S. Nalimova, A. I. Maksimov, L. B. Matyushkin, and V. A. Moshnikov, Glass Phys. Chem. 45, 251 (2019). https://doi.org/10.1134/S0132665119040097

    Article  CAS  Google Scholar 

  10. P. P. Das, A. Roy, and P. S. Devi, Trans. Indian Ceram. Soc. 75, 147 (2016). https://doi.org/10.1080/0371750X.2016.1228482

    Article  CAS  Google Scholar 

  11. N. H. Hanh, L. Van Duy, C. M. Hung, N. V. Duy, Y.-W. Heo, N. V. Hieu, and N. D. Hoa, Sens. Actuators, A 302, 111834 (2020). https://doi.org/10.1016/j.sna.2020.111834

    Article  CAS  Google Scholar 

  12. C. Chen, G. Li, J. Li, and Y. Liu, Ceram. Int. 41, 1857 (2015). https://doi.org/10.1016/J.CERAMINT.2014.09.136

    Article  CAS  Google Scholar 

  13. D. Wang, X. Pu, X. Yu, L. Bao, Y. Cheng, J. Xu, S. Han, Q. Ma, and X. Wang, J. Colloid Interface Sci. 608, 1074 (2022). https://doi.org/10.1016/j.jcis.2021.09.167

    Article  CAS  Google Scholar 

  14. M. A. Anikina, A. A. Ryabko, S. S. Nalimova, and A. I. Maximov, J. Phys.: Conf. Ser. 1851, 012010 (2021). https://doi.org/10.1088/1742-6596/1851/1/012010

    Article  CAS  Google Scholar 

  15. V. M. Kondratev, A. D. Bolshakov, and S. S. Nalimova, in Proc. 2021 IEEE Conf. of Russian Young Researchers in Electrical and Electronic Engineering, ElConRus 2021 (St. Petersburg, 2021), p. 1163. https://doi.org/10.1109/ElConRus51938.2021.9396573

  16. A. A. Ryabko, A. I. Maximov, V. N. Verbitskii, V. S. Levitskii, V. A. Moshnikov, and E. I. Terukov, Semiconductors 54, 1496 (2020). https://doi.org/10.1134/S1063782620110238

    Article  CAS  Google Scholar 

  17. A. Bobkov, A. Varezhnikov, I. Plugin, F. S. Fedorov, V. Goffman, V. Sysoev, V. Moshnikov, V. Trouillet, U. Geckle, and M. Sommer, Sensors 19, 4265 (2019). https://doi.org/10.3390/s19194265

    Article  CAS  Google Scholar 

  18. S. S. Nalimova, Z. V. Shomakhov, K. N. Punegova, A. A. Ryabko, and A. I. Maksimov, Fiz.-Khim. Aspekty Izucheniya Klasterov, Nanostruktur Nanomater., No. 13, 910 (2021). https://doi.org/10.26456/pcascnn/2021.13.910

  19. S. S. Nalimova, Z. V. Shomakhov, V. A. Moshnikov, A. A. Bobkov, A. A. Ryabko, and Z. Kh. Kalazhokov, Tech. Phys. 65, 1087 (2020). https://doi.org/10.1134/S1063784220070142

    Article  CAS  Google Scholar 

  20. A. A. Ryabko, A. A. Bobkov, S. S. Nalimova, A. I. Maksimov, V. S. Levitskii, V. A. Moshnikov, ansd E. I. Terukov, Zh. Tekh. Fiz. 92, 758 (2022). https://doi.org/10.21883/JTF.2022.05.52382.314-21

    Article  Google Scholar 

  21. S. S. Nalimova, A. A. Ryabko, A. I. Maximov, and V. A. Moshnikov, J. Phys.: Conf. Ser. 1697, 012128 (2020). https://doi.org/10.1088/1742-6596/1697/1/012128

    Article  CAS  Google Scholar 

  22. S. S. Karpova, V. A. Moshnikov, A. I. Maksimov, S. V. Mjakin, and N. E. Kazantseva, Semiconductors 47, 1026 (2013). https://doi.org/10.1134/S1063782613080095

    Article  CAS  Google Scholar 

  23. S. S. Nalimova, A. A. Bobkov, A. A. Ryabko, A. I. Maximov, V. A. Moshnikov, Z. V. Shomakhov, and Z. K. Kalazhokov, J. Phys.: Conf. Ser. 1658, 012034 (2020). https://doi.org/10.1088/1742-6596/1658/1/012034

    Article  CAS  Google Scholar 

  24. S. Yan, Y. Yu, W. Zheng, and Y. Cao, Phys. E (Amsterdam, Neth.) 106, 57 (2019). https://doi.org/10.1016/j.physe.2018.10.011

  25. S. Yan, Z. He, G. Zhou, Y. Yu, and T. Cao, Mater. Sci. Semicond. Process. 130, 105818 (2021). https://doi.org/10.1016/j.mssp.2021.105818

    Article  CAS  Google Scholar 

  26. E. Wang, W. Yang, and Y. Cao, J. Phys. Chem. C 113, 20912 (2009). https://doi.org/10.1021/jp9041793

    Article  CAS  Google Scholar 

Download references

Funding

V.M. Kondratev is grateful to the Ministry of Science and Higher Education of the Russian Federation for the financial support (Agreement no. 075-03-2023-106 dated January 13, 2023, project FSMG-2021-0005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Z. V. Shomakhov or S. S. Nalimova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shomakhov, Z.V., Nalimova, S.S., Kondratev, V.M. et al. Changes in the Energy of Surface Adsorption Sites of ZnO Doped with Sn. J. Surf. Investig. 17, 898–902 (2023). https://doi.org/10.1134/S1027451023040316

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451023040316

Keywords:

Navigation