Skip to main content
Log in

On the Role of Oxygen in Phase Formation Involving Oxides of the Bam + nBimOy (m = 1–10; n = 0–5, 7–9, 11, 13, 17) Homologous Series

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The role of oxygen in the synthesis and phase formation of perovskite-like oxides of the homologous series Bam + nBimOy (m = 1–10; n = 0–5, 7–9, 11, 13, 17) is discussed. X-ray diffraction and chemical analysis show that Bam + nBimOy oxides are formed in air in the presence of an oxidizing agent (oxygen) through the initial stage of formation of Bi(V) enriched phases. At this synthesis stage, the Ba : Bi 17 : 9–5 : 4 samples are of the two-phase type and consist of Ba2Bi+4.78O4.39 and BaBiO3 oxides. With an increase in the temperature, the samples first undergo solid-phase transformations into Ba : Bi 9 : 4, 5 : 2, 21 : 8 oxides, and in the liquidus–solidus region, liquid-phase transformations occur with the reduction of Bi(V) → Bi(III) and oxygen loss in the presence of oxygen-deficient phases. When cooling the oxygen-deficient Ba–Bi–O melt (\(\overline {{\text{Bi}}} \) = 3.00–3.06), oxygen is absorbed, as evidenced by an increase in the average degree of bismuth oxidation with a decrease in the annealing temperature due to the oxidation of Bi(III) → Bi(V). Cooling samples of Ba : Bi 25 : 8, 11 : 4, 21 : 8, 5 : 2, 9 : 4, and 2 : 1 to 20°C results in their complete saturation with oxygen; phases 25 : 8, 11 : 4, and 5 : 2 can be obtained almost completely oxidized (\(\overline {{\text{Bi}}} \) = 4.95–5.00).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. L. A. Klinkova, V. I. Nikolaichik, N. V. Barkovskii, and V. K. Fedotov, Russ. J. Inorg. Chem. 44, 1974 (1999).

    Google Scholar 

  2. L. A. Klinkova, V. I. Nikolaichik, N. V. Barkovskii, and V. K. Fedotov, Russ. J. Inorg. Chem. 42, 810 (1997).

    Google Scholar 

  3. L. A. Klinkova, V. I. Nikolaichik, N. V. Barkovskii, and V. K. Fedotov, J. Solid State Chem. 146, 439 (1999). https://doi.org/10.1006/jssc.1999.8390

    Article  CAS  Google Scholar 

  4. R. von Sholder and K.-W. Ganter, Z. Anorg. Allg. Chem. 19, 375 (1963). https://doi.org/10.1002/zaac.19633190518

    Article  Google Scholar 

  5. M. Licheron, F. Gervais, J. Coutures, and J. Choisnet, Solid State Commun. 75, 759 (1990). https://doi.org/10.1016/0038-1098(90)90241-3

    Article  CAS  Google Scholar 

  6. M. Itoh, T. Sawada, R. Liang, H. Kawaji, and T. Nakamura, J. Solid State Chem. 87, 245 (1990). https://doi.org/10.1016/0022-4596(90)90090-K

    Article  CAS  Google Scholar 

  7. K. P. Reis, A. J. Jacobson, and J. Kulik, Chem. Mater. 5, 1070 (1993). https://doi.org/10.1021/cm00032a007

    Article  CAS  Google Scholar 

  8. K. P. Reis, A. J. Jacobson, and J. M. Nicol, J. Solid State Chem. 107, 428 (1993). https://doi.org/10.1006/jssc.1993.1367

    Article  CAS  Google Scholar 

  9. M. A. Subramanian, J. Solid State Chem. 111, 134 (1994). https://doi.org/10.1006/jssc.1994.1208

    Article  CAS  Google Scholar 

  10. N. V. Barkovskii, Russ. J. Gen. Chem. 91, 125 (2021). https://doi.org/10.1134/S1070363221010138

    Article  Google Scholar 

  11. L. A. Klinkova, N. V. Barkovskii, M. V. Filatova, and S. A. Shevchenko, Sverkhprovodimost: Fiz., Khim., Tekh. 5, 1691 (1992).

    CAS  Google Scholar 

  12. N. V. Barkovskii, Zavod. Lab., Diagn. Mater. 85 (8), 16 (2019).

    CAS  Google Scholar 

  13. S. N. Ruddlesden and P. Popper, Acta Crystallogr. 11, 54 (1958). https://doi.org/10.1107/S0365110X58000128

    Article  CAS  Google Scholar 

  14. Y. Shimakawa, Y. Kubo, T. Manako, Y. Nakabayashi, and H. Igarashi, Phys. C (Amsterdam, Neth.) 156, 97 (1988). https://doi.org/10.1016/0921-4534(88)90111-6

  15. W. E. Pickett, Rev. Mod. Phys. 61, 433 (1989). https://doi.org/10.1103/RevModPhys.61.433

    Article  CAS  Google Scholar 

  16. H. Yamauchi, M. Karppinen, and S. Tanaka, Phys. C (Amsterdam, Neth.) 263, 146 (1996). https://doi.org/10.1016/0921-4534(96)00075-5

  17. T. A. Zaleski and T. K. Kope, Acta Phys. Pol., A 106, 561 (2004). 10.12693/APhysPolA.106.56

    Article  CAS  Google Scholar 

  18. L. A. Klinkova, Sverkhprovodimost: Fiz., Khim., Tekh. 6, 855 (1993).

    CAS  Google Scholar 

  19. B. Yan, M. Jansen, and C. Felser, Nat. Phys. 9, 709 (2013). https://doi.org/10.1038/NPHYS2762

    Article  CAS  Google Scholar 

  20. J. Tang, Z. Zou, and J. Ye, J. Phys. Chem. C 111, 12779 (2007). https://doi.org/10.1021/jp073344l

    Article  CAS  Google Scholar 

  21. B. Men, J. Zhang, C. Diao, X. Li, X. Liu, and H. Zheng, J. Mater. Sci.: Mater. Electron. 29, 12729 (2018). https://doi.org/10.1007/s10854-018-9390-8

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to O. F. Shakhlevich for X-ray diffraction analysis of the samples.

Funding

The work was carried out within the framework of the state task (no. 0032-2018-0005) of the Institute of Solid State Physics, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Barkovskii.

Ethics declarations

We declare that we have no conflict of interest.

Additional information

Translated by N. Saetova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barkovskii, N.V. On the Role of Oxygen in Phase Formation Involving Oxides of the Bam + nBimOy (m = 1–10; n = 0–5, 7–9, 11, 13, 17) Homologous Series. J. Surf. Investig. 16, 1164–1170 (2022). https://doi.org/10.1134/S1027451022060325

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451022060325

Keywords:

Navigation