Skip to main content
Log in

Abstract

Experimental data on particle generation in the corona-discharge zone are obtained. The size distribution of these particles is measured as a function of the discharge parameters. The particle-size spectra are shown to slightly depend on the polarity of the corona point and are only determined by the potential difference and current strength. Various materials such as iron, copper, silver, molybdenum, tungsten, and graphite are the objects studied. The measurements are carried out under normal conditions in various gaseous atmospheres such as air, nitrogen, and argon. A theoretical model for the interaction of corona-discharge plasma with a metal surface is developed. The extraction of atoms from lattice sites supposedly occurs as a result of collective excitations of the electron gas in the metals. This theoretical model is based on the resonant excitation of a plasmon in the surface layer of a metal upon the inelastic scattering of charged particles of a corona discharge on the electrons of a metal sample. It is shown using the electrostatic-imaging method that the Coulomb interaction of a negative-charge-density wave on the surface with a surface ion of the crystal lattice is capable of extraction the ion from the metal. The interaction cross section of this process is estimated. These results are in qualitative agreement with the experimental data, which confirms the validity of the chosen interaction model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. D. Megyeria, A. Kohuta, and Z. Geretovszky, J. Aerosol Sci. 154, 105758 (2021).

    Article  Google Scholar 

  2. E. Warburg, Wied. Ann. 67, 69 (1899).

    Article  Google Scholar 

  3. J. Niedbalski, Rev. Sci. Instrum. 74, 3520 (2003).

    Article  CAS  Google Scholar 

  4. M.-W. Li, Zh. Hu, X.-Zh. Wang, et al., J. Mater. Sci. 39, 283 (2004).

    Article  CAS  Google Scholar 

  5. J.-S. Chang, P. A. Lawless, and T. Yamamoto, IEEE Trans. Plasma Sci. 19, 1152 (1991).

    Article  CAS  Google Scholar 

  6. M. Goldman, A. Goldman, and R. S. Sigmond, Pure Appl. Chem. 57, 1353 (1985).

    Article  CAS  Google Scholar 

  7. A. A. Petrov, R. H. Amirov, and I. S. Samoylov, IEEE Trans. Plasma Sci. 37, 1146 (2009).

    Article  CAS  Google Scholar 

  8. V. A. Kurnayev, Yu. S. Protasov, and I. V. Tsvetkov, Introduction to Beam Electronics: Training Manual, Ed. by V. A. Kurnayev (Mosk. Inzh.-Fiz. Inst., Moscow, 2008).

    Google Scholar 

  9. L. D. Landau and E. M. Lifshits, Electrodynamics of Continuous Media (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  10. V. V. Klimov, Nanoplasmonics (Fizmatlit, Moscow, 2009) [in Russian].

    Google Scholar 

  11. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007).

    Book  Google Scholar 

  12. C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983; Mir, Moscow, 1986).

  13. A. A. Lushnikov and A. J. Simonov, Z. Phys. 270, 17 (1974).

    Article  CAS  Google Scholar 

  14. A. A. Lushnikov, V. V. Maksimenko, and A. J. Simonov, Solid State Commun. 20, 545 (1976).

    Article  CAS  Google Scholar 

  15. A. A. Lushnikov, V. V. Maksimenko, and A. J. Simonov, Z. Phyz. 27, 321 (1977).

  16. V. V. Maksimenko, A. J. Simonov, and A. A. Lushnikov, Phys. Status Solidi B 82, 685 (1977).

    Article  Google Scholar 

  17. A. A. Lushnikov, V. V. Maksimenko, and A. J. Simonov, in Electromagnetic Surface Modes, Ed. by A. D. Boardman (Wiley, Chichester, 1982), p. 305.

    Google Scholar 

  18. L. D. Landau and E. M. Lifshits, Quantum Mechanics: Nonrelativistic Theory (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  19. A. B. Migdal, in Theory of Finite Fermi System and Application to Atomic Nuclei (Wiley, New York, 1967), p. 318.

    Google Scholar 

  20. C. Kittel, C., Introduction to Solid State Physics (Wiley, New York, 1953; Nauka, Moscow, 1978).

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 19-05-50007, Mikromir).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. A. Zagaynov or V. V. Maksimenko.

Ethics declarations

We declare that we have no conflicts of interest.

Additional information

Translated by E. Boltukhina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zagaynov, V.A., Maksimenko, V.V., Kalashnikov, N.P. et al. Particle Generation in the Corona-Discharge Zone. J. Surf. Investig. 16, 462–468 (2022). https://doi.org/10.1134/S1027451022040188

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451022040188

Keywords:

Navigation