Skip to main content
Log in

Abstract

Determining the probability of the neutron–antineutron transformation has been the subject of research for five decades. To increase the luminosity in experiments to measure the probability of this process, it is proposed that a neutron guide be used as it increases the solid angle of neutron-source visibility. To increase the range of values of the wave vector of neutrons and antineutrons, it is proposed that a neutron guide with a supermirror coating be employed. In this work, we simulate a multilayer structure in which the range of wave-vector values is extended. The structure is a supermirror in which the layers consist of tungsten and barium isotopes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. M. V. Kazarnovskii, V. A. Kuz’min, K. G. Chetyrkin, and M. E. Shaposhnikov, JETP Lett. 32, 88 (1980).

    CAS  Google Scholar 

  2. K. G. Chetyrkin, M. V. Kazarnovskii, V. A. Kuz’min, and M. E. Shaposhnikov, Phis. Lett. B 99, 358 (1981).

    Article  Google Scholar 

  3. M. Baldo-Ceolin, P. Benetti, T. Bitter, et al., Phys. Lett. B 236, 95 (1990).

    Article  CAS  Google Scholar 

  4. L. B. Okun’, Phys.—Usp. 50, 380 (2007).

    Article  Google Scholar 

  5. A. P. Serebrov, E. B. Aleksandrov, N. A. Dovator, S. P. Dmitriev, A. K. Fomin, P. Geltenbort, A. G. Kharitonov, I. A. Krasnoschekova, M. S. Lasakov, A. N. Murashkon, G. E. Shmelev, V. E. Varlamov, A. V. Vassiljev, O. M. Zherebtsov, and O. Zimmer, Phys. Lett. B 663, 181 (2008).

    Article  CAS  Google Scholar 

  6. Z. Berezhiani, F. Matthew, Yu. Kamyshkov, B. Rybolt, and L. Varriano, Phys. Rev. D: Part. Fields 96, 035039 (2017).

    Article  Google Scholar 

  7. A. P. Serebrov, Phys.—Usp. 62, 596 (2019).

    Article  CAS  Google Scholar 

  8. V. F. Ezhov, A. Z. Andreev, G. Ban, B. A. Bazarov, P. Geltenbort, A. G. Glushkov, V. A. Knyazkov, N. A. Kovrizhnykh, G. B. Krygin, O. Naviliat-Cuncic, and V. L. Ryabov, JETP Lett. 107, 707 (2018).

    Article  Google Scholar 

  9. C. Theoroine, Nucl. Phys. News 25, 13 (2015).

    Article  Google Scholar 

  10. V. V. Nesvizhevsky, V. Gudkov, K. V. Protasov, W. M. Snow, and A. Yu. Voronin, EPJ Web Conf. 191, 01005 (2018).

  11. H. Maier-Leibnitz, J. Nucl. Eng. 17, 217 (1963).

    CAS  Google Scholar 

  12. J. B. Hayter and H. A. Mook, J. Appl. Crystallogr. 22, 35 (1989).

    Article  Google Scholar 

  13. O. Scharpf, Phys. B (Amsterdam, Neth.) 174, 514 (1991).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Nikitenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikitenko, Y.V., Sukhanov, A.E. Supermirror for Antineutrons. J. Surf. Investig. 16, 537–540 (2022). https://doi.org/10.1134/S1027451022040140

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451022040140

Keywords:

Navigation