Skip to main content
Log in

A Comparative Study of Surface Energy Characterization for Paragonite Mica

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

Surface energy calculation of materials in production technology has become even more important in terms of surface quality with interfacial phenomena. In this study, geometric-harmonic mean equation, OWRK, Schultz and Dorris–Gray methods were applied to characterize surface energy of paragonite mica by contact angle measurement technique (CAMT) and inverse gas chromatography (IGC) at room temperature. Total energy ranges from 49 to 122 mN/m. While values obtained from Dorris–Gray and Schultz methods are higher than others, the dispersive component result of Dorris–Gray is slightly higher than Schultz method. This work clearly shows that the surface energy of even superhydrophilic surfaces can be calculated by both CAMT and IGC. However, it was obtained with a comparative study that IGC with Dorris–Gray method is a well beneficial measurement tool to calculate surface energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. D. Y. Kwok, and A. W. Neumann, Colloids Surf., A 161, 31 (2000). https://doi.org/10.1016/S0927-7757(99)00323-4

    Article  CAS  Google Scholar 

  2. K. Katoh, T. Wakimoto, Y. Yamamoto, and T. Ito, Exp. Therm. Fluid Sci. 60, 354 (2015). https://doi.org/10.1016/J.EXPTHERMFLUSCI.2014.05.006

    Article  Google Scholar 

  3. H. G. Ozcelik, A. C. Ozdemir, B. Kim, and M. Barisik, Mol. Simul. 46, 224 (2020). https://doi.org/10.1080/08927022.2019.1690145

    Article  CAS  Google Scholar 

  4. W. Fox, and H. W. Zisman, J. Colloid Sci. 7, 109 (1952). https://doi.org/10.1016/0095-8522(52)90054-8

    Article  CAS  Google Scholar 

  5. F. Fowkes, Ind. Eng. Chem. Res. 56, 40 (1964). https://doi.org/10.1021/ie50660a008

    Article  CAS  Google Scholar 

  6. S. Wu, J. Polym. Sci. 34, 19 (1971). https://doi.org/10.1002/polc.5070340105

    Article  Google Scholar 

  7. C. J. Van Oss, M. K. Chaudhury, and R. J. Good, Chem. Rev. 88, 927 (1988). https://doi.org/10.1021/cr00088a006

    Article  CAS  Google Scholar 

  8. J. Schultz, K. Tsutsumi, and J. B. Donnet, J. Colloid Interface Sci. 59, 272 (1977). https://doi.org/10.1016/0021-9797(77)90008-X

    Article  CAS  Google Scholar 

  9. J. Schultz, K. Tsutsumi, and J. B. Donnet, J. Colloid Interface Sci. 59, 277 (1977). https://doi.org/10.1016/0021-9797(77)90009-1

    Article  CAS  Google Scholar 

  10. D. Cava, R. Gavara, J. M. Lagaron, and A. Voelkel, J. Chromatogr. A 1148, 86 (2007). https://doi.org/10.1016/J.CHROMA.2007.02.110

    Article  CAS  Google Scholar 

  11. Q. C. Zou, S. L. Zhang, Q. Q. Tang, S. M. Wang, and L. M. Wu, J. Chromatogr. A 1110, 140 (2006). https://doi.org/10.1016/J.CHROMA.2006.01.052

    Article  CAS  Google Scholar 

  12. P. Prziwara, S. Breitung-Faes, and A. Kwade, Miner. Eng. 144, 106030 (2019). https://doi.org/10.1016/J.MINENG.2019.106030

    Article  CAS  Google Scholar 

  13. S. Wu, J. Adhes. 5, 39 (1973). https://doi.org/10.1080/00218467308078437

    Article  CAS  Google Scholar 

  14. D. K. Owens, and R. C. Wendt, J. Appl. Polym. Sci. 13, 1741 (1969). https://doi.org/10.1002/APP.1969.070130815

    Article  CAS  Google Scholar 

  15. J. Schultz, L. Lavielle, and C. Martin, J. Adhes. 23, 45 (1987). https://doi.org/10.1080/00218468708080469

    Article  CAS  Google Scholar 

  16. G. M. Dorris, and D. G. Gray, J. Colloid Interface Sci. 77, 353 (1980). https://doi.org/10.1016/0021-9797(80)90304-5

    Article  CAS  Google Scholar 

  17. B. Shi, Y. Wang, and L. Jia, J. Chromatogr. A 1218, 860 (2011). https://doi.org/10.1016/J.CHROMA.2010.12.050

    Article  CAS  Google Scholar 

  18. A. Van Asten, N. Van Veenendaal, and S. Koster, J. Chromatogr. A 888, 175 (2000). https://doi.org/10.1016/S0021-9673(00)00487-8

    Article  CAS  Google Scholar 

  19. C. Bilgiç and F. Tümsek, J. Chromatogr. A 1162, 83 (2007). https://doi.org/10.1016/J.CHROMA.2007.04.003

    Article  Google Scholar 

  20. N. M. Ahfat, G. Buckton, R. Burrows, and M. D. Ticehurst, Eur. J. Pharm. Sci. 9, 271 (2000). https://doi.org/10.1016/S0928-0987(99)00063-9

    Article  CAS  Google Scholar 

  21. R. Ho, S. J. Hinder, J. F. Watts, S. E. Dilworth, D. R. Williams, and J. Y. Y. Heng, Int. J. Pharm. 387, 79 (2010). https://doi.org/10.1016/J.IJPHARM.2009.12.011

    Article  CAS  Google Scholar 

  22. Z. Yao, D. Wu, J. Y. Y. Heng, S. Lanceros-Mendez, E. Hadjittofis, W. Su, J. Tang, H. Zhao, and W. Wu, Int. J. Adhes. Adhes. 78, 55 (2017). https://doi.org/10.1016/J.IJADHADH.2017.06.018

    Article  CAS  Google Scholar 

  23. B. Yu, L. Hou, S. Wang, and H. Huang, Adv. Mater. Interfaces, 6, 1801552 (2019). https://doi.org/10.1002/ADMI.201801552

    Article  Google Scholar 

  24. H. Christenson, J. Phys. Chem. 97, 12034 (1993). https://doi.org/10.1021/j100148a032

    Article  CAS  Google Scholar 

  25. E. Papirer, P. Roland, M. Nardin, and H. Balard, J. Colloid Interface Sci. 113, 62 (1986). https://doi.org/10.1016/0021-9797(86)90205-5

    Article  CAS  Google Scholar 

  26. A. I. Bailey, and S. M. Kay, Proc. R. Soc. London, Ser. A 301, 47 (1967). https://doi.org/10.1098/RSPA.1967.0189

    Article  CAS  Google Scholar 

  27. X. Yao-wen, G. Xia-hui, and C. Yi-jun, J. Cent. South Univ. 25, 1295 (2018). https://doi.org/10.1007/s11771-018-3826-4

    Article  CAS  Google Scholar 

  28. R. G. Horn, J. N. Israelachvili, and F. Pribac, J. Colloid Interface Sci. 115, 480 (1987). https://doi.org/10.1016/0021-9797(87)90065-8

    Article  CAS  Google Scholar 

  29. K. V. Raman, and M. L. Jackson, Soil Sci. Soc. Am. J. 29, 29 (1965). https://doi.org/10.2136/SSSAJ1965.036159950029-00010011X

    Article  CAS  Google Scholar 

  30. K. J. T. Livi, G. E. Christidis, P. Arkai, and D. R. Veblen, Am. Mineral. 93, 520 (2008). https://doi.org/10.2138/AM.2008.2662

    Article  CAS  Google Scholar 

  31. T. Young, Philos. Trans. R. Soc. London 95, 65 (1805). https://doi.org/10.1098/RSTL.1805.0005

    Article  Google Scholar 

  32. R. J. Good, and C. J. Van Oss, in Modern Approaches to Wettability: Theory and Applications, Ed. by Schrader M. E. and Loeb G. I. (Springer, Boston, 1992), p. 1.

    Google Scholar 

  33. S. Mohammadi-Jam, and K. E. Waters, Adv. Colloid Interface Sci. 212, 21 (2014). https://doi.org/10.1016/J.CIS.2014.07.002

    Article  CAS  Google Scholar 

  34. R. N. Shimizu, and N. R. Demarquette, J. Appl. Polym. Sci. 76, 1831 (2000). https://doi.org/10.1002/(SICI)1097-4628(20000620)76:12

    Article  CAS  Google Scholar 

  35. M. Annamalai, K. Gopinadhan, S. A. Han, S. Saha, H. J. Park, E. Bi Cho, B. Kumar, A. Patra, S. Kim, and T. Venkatesan, Nanoscale, 8, 5764 (2016). https://doi.org/10.1039/C5NR06705G

    Article  CAS  Google Scholar 

  36. J. Muscatello, E. Chacon, P. Tarazona, and F. Bresme, Phys. Rev. Lett. 119, 045901 (2017). https://doi.org/10.1103/PhysRevLett.119.045901

    Article  Google Scholar 

  37. S. K. Papadopoulou, G. Dritsas, I. Karapanagiotis, I. Zuburtikudis, and C. Panayiotou, Eur. Polym. J. 46, 202 (2010). https://doi.org/10.1016/J.EURPOLYMJ.2009.11.002

    Article  CAS  Google Scholar 

  38. G. L. Klein, G. Pierre, MNB. Fontaine, and M. Graber, J. Chromatogr. Sci. 53, 1233 (2015). https://doi.org/10.1093/CHROMSCI/BMV008

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Cihan Ozdemir.

Ethics declarations

The author declares that it has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cihan Ozdemir, A. A Comparative Study of Surface Energy Characterization for Paragonite Mica. J. Surf. Investig. 16, 541–547 (2022). https://doi.org/10.1134/S1027451022040036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451022040036

Keywords:

Navigation