Skip to main content
Log in

Crystal Structure and Orbital Ordering in BiMnO3 + δ (0 < δ ≤ 0.14) Ceramics

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The crystal structure of BiMnO3 + δ is studied as a function of the nominal oxygen content using X-ray synchrotron diffraction. It is found that an increase in the nominal oxygen-ion concentration leads to a series of phase transitions from the monoclinic (C2/c) to another monoclinic phase (P21/c) and then to the orthorhombic structure Pnma through the formation of a two-phase structural state. The indicated sequence of the phase transitions is accompanied by gradual destruction of the orbital ordering formed by the orbitals of Mn3+ ions, which is caused by the nonuniform distribution of vacancies of manganese ions in the B positions of the perovskite lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. C. Ederer and N. A. Spaldin, Phys. Rev. B 71, 060401(R) (2005). https://doi.org/10.1103/PhysRevB.71.060401

  2. A. Moreira dos Santos, S. Parashar, A. R. Raju, Y. S. Zhao, A. K. Cheetham, and C. N. R. Rao, Solid State Commun. 122, 49 (2002). https://doi.org/10.1016/S0038-1098(02)00087-X

    Article  CAS  Google Scholar 

  3. A. A. Belik, Adv. Mater. 12, 044610 (2011). https://doi.org/10.1088/1468-6996/12/4/044610

    Article  CAS  Google Scholar 

  4. T. Kimura, S. Kawamoto, I. Yamada, M. Azuma, M. Takano, and Y. Tokura, Phys. Rev. B 67, 180401 (2003). https://doi.org/10.1103/PhysRevB.67.180401

    Article  CAS  Google Scholar 

  5. T. Atou, H. Chiba, K. Ohoyama, Y. Yamaguchi, and Y. Syono, J. Solid State Chem. 145, 639 (1999). https://doi.org/10.1006/jssc.1999.8267

    Article  CAS  Google Scholar 

  6. A. Moreira dos Santos, A. K. Cheetham, T. Atou, Y. Syono, Y. Yamaguchi, K. Ohoyama, H. Chiba, and C. N. R. Rao, Phys. Rev. B 66, 064425 (2002). https://doi.org/10.1103/PhysRevB.66.064425

    Article  CAS  Google Scholar 

  7. A. A. Belik, S. Iikubo, T. Yokosawa, K. Kodama, N. Igawa, S. Shamoto, M. Azuma, M. Takano, K. Kimoto, Y. Matsui, and E. Takayama-Muromachi, J. Am. Chem. Soc. 129, 971 (2007). https://doi.org/10.1021/ja0664032

    Article  CAS  Google Scholar 

  8. J. M. D. Coey, M. Viret, and S. von Molnár, Adv. Phys. 58, 567 (2009). https://doi.org/10.1080/00018730903303370

    Article  CAS  Google Scholar 

  9. S. V. Trukhanov, V. A. Khomchenko, D. V. Karpinsky, M. V. Silibin, A. V. Trukhanov, L. S. Lobanovsky, H. Szymczak, C. E. Botez, and I. O. Troyanchuk, J. Rare Earths 37, 1242 (2019). https://doi.org/10.1016/j.jre.2018.12.010

    Article  CAS  Google Scholar 

  10. J. B. Goodenough, A. Wold, R. J. Arnott, and N. Menyuk, Phys. Rev. 124, 373 (1961). https://doi.org/10.1103/PhysRev.124.373

    Article  CAS  Google Scholar 

  11. I. V. Solovyev and Z. V. Pchelkina, New J. Phys. 10, 073021 (2008). https://doi.org/10.1088/1367-2630/10/7/073021

    Article  CAS  Google Scholar 

  12. F. G. Figueiras, D. Karpinsky, P. B. Tavares, J. N. Gonçalves, et al., Phys. Chem. Chem. Phys. 19, 1335 (2017). https://doi.org/10.1039/c6cp07682c

    Article  CAS  Google Scholar 

  13. H. Chiba, T. Atou, and Y. Syono, J. Solid State Chem. 132, 139 (1997). https://doi.org/10.1006/jssc.1997.7432

    Article  CAS  Google Scholar 

  14. A. Sundaresan, R.V. K. Mangalam, A. Iyo, Y. Tanaka, and C.N.R. Rao, J. Mater. Chem. 18, 2191 (2008). https://doi.org/10.1039/b803118p

    Article  CAS  Google Scholar 

  15. A. A. Belik, T. Kolodiazhnyi, Kosudac Kosuke, and Eiji Takayama-Muromachi, J. Mater. Chem. 19, 1593 (2009). https://doi.org/10.1039/b818645f

    Article  CAS  Google Scholar 

  16. A. A. Belik, K. Kodama, N. Igawa, S. Shamoto, K. Kosuke, and E. Takayama-Muromachi, J. Am. Chem. Soc. 132, 8137 (2010). https://doi.org/10.1021/ja102014n

    Article  CAS  Google Scholar 

  17. H. M. Rietveld, J. Appl. Crystallogr. 2, 65 (1969). https://doi.org/10.1107/S0021889869006558

  18. J. Rodríguez-Carvajal, Phys. B (Amsterdam, Neth.) 192, 55 (1993). https://doi.org/10.1016/0921-4526(93)90108-I

Download references

ACKNOWLEDGMENTS

We thank the Helmholtz-Zentrum Berlin für Materialien und Energie for the synchrotron studies.

Funding

The research was carried out with the support of the Russian Foundation for Basic Research (project no. 20-52-00023) and the Belarusian Republican Foundation for Basic Research (project no. T20P-121) within the framework of the State assignment of the Ministry of Higher Education and Science, project FZWM-2020-0008.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. V. Sikolenko or A. N. Chobot.

Ethics declarations

We declare that we have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sikolenko, V.V., Chobot, A.N., Bushinsky, M.V. et al. Crystal Structure and Orbital Ordering in BiMnO3 + δ (0 < δ ≤ 0.14) Ceramics. J. Surf. Investig. 16, 96–100 (2022). https://doi.org/10.1134/S1027451022010335

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451022010335

Keywords:

Navigation