Skip to main content
Log in

Structure and Properties of Nb–Si–Al Hypoeutectic Alloys Obtained by Aluminothermy at Different Cooling Rates

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The effect of the cooling rate on the structure and properties of hypoeutectic Nb–Si–Al alloys obtained by aluminothermy in an argon atmosphere studied by scanning electron microscopy, X-ray phase analysis, and energy-dispersive analysis. The indentation method is used to measure the mechanical properties of the obtained alloys: the fracture toughness and hardness. The cooling rate of the alloy is regulated by replacing the crucible material: the cooling rates of the alloy differ by almost an order of magnitude. The difference in the cooling rates does not affect the phase composition of the obtained alloys: in all cases, a solid solution of silicon and aluminum in niobium (Nbss) and β-Nb5Si3 silicide are formed. The microstructures of the obtained alloys are similar, but differ in dispersion. The formation of a finer structure led to an increase in the mechanical properties of the alloy compared to those of the alloy with a lower degree of structure dispersion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Yu. A. Kocherzhinsky, L. M. Yupko, and E. A. Shishkin, Russ. Metall., No. 1, 206 (1980).

  2. W. Y. Kim, H. Tanaka, A. Kasama, and S. Hanada, Intermetallics 9, 827 (2001). https://doi.org/10.1016/S0966-9795(01)00072-3

    Article  CAS  Google Scholar 

  3. J. Sha, H. Hirai, T. Tatsuo, A. Kitahara, H. Ueno, and S. Hanada, Mater. Sci. Eng., A 364, 151 (2004). https://doi.org/10.1016/j.msea.2003.08.014

    Article  CAS  Google Scholar 

  4. K. Chattopadhyay, G. Balachandran, R. Mitra, and K. K. Ray, Intermetallics 14, 1452 (2006). https://doi.org/10.1016/j.intermet.2006.01.054

    Article  CAS  Google Scholar 

  5. C. L. Ma, J. G. Li, Y. Tan, R. Tanaka, and S. Hanada, Mater. Sci. Eng., A 386, 375 (2004). https://doi.org/10.1016/j.msea.2004.08.004

    Article  CAS  Google Scholar 

  6. W. Y. Kim, I. D. Yeo, T. Y. Ra, G. S. Cho, and M. S. Kim, J. Alloys Compd. 364, 186 (2004). https://doi.org/10.1016/S0925-8388(03)00495-X

    Article  CAS  Google Scholar 

  7. L. Bendersky, F. Biancaniello, W. J. Boettinger, and J. H. Perepezko, Mater. Sci. Eng. 89, 151 (1987). https://doi.org/10.1016/0025-5416(87)90258-8

    Article  CAS  Google Scholar 

  8. L. Zifu and P. Tsakiropoulos, Intermetallics 18, 1072 (2010). https://doi.org/10.1016/j.intermet.2010.02.012

    Article  CAS  Google Scholar 

  9. S. Qu, Y. Han, and L. Sang, Intermetallics 15, 810 (2007). https://doi.org/10.1016/j.intermet.2006.10.044

    Article  CAS  Google Scholar 

  10. K. S. Chan, Mater. Sci. Eng., A 409, 257 (2005). https://doi.org/10.1016/j.msea.2005.06.077

    Article  CAS  Google Scholar 

  11. I. Papadimitriou, C. Uttonet, A. Scott, and P. Tsakiropoulos, Intermetallics 54, 125 (2014). https://doi.org/10.1016/j.intermet.2014.05.020

    Article  CAS  Google Scholar 

  12. W. Kim, H. Tanaka, A. Kasama, and S. Hanada, Intermetallics 10, 625 (2002). https://doi.org/10.1016/S0966-9795(02)00041-9

    Article  CAS  Google Scholar 

  13. S. Kashyap, C. S. Tiwary, and K. Chattopadhyay, Intermetallics 19, 1943 (2011). https://doi.org/10.1016/j.intermet.2011.05.018

    Article  CAS  Google Scholar 

  14. S. Kashyap, C. S. Tiwary, and K. Chattopadhyay, Mater. Sci. Eng., A 559, 74 (2013). https://doi.org/10.1016/j.msea.2012.08.027

    Article  CAS  Google Scholar 

  15. E. V. Shelekhov and T. A. Sviridova, Metal Sci. Heat Treat. 42, 309 (2000). https://doi.org/10.1007/BF02471306

    Article  CAS  Google Scholar 

  16. V. S. Doroshenko, O. I. Shinskii, and V. P. Kravchenko, Protsessy Lit’ya, No. 5, 74 (2009).

    Google Scholar 

  17. Physical Quantities: A Handbook, Ed. by I. S. Grigor’ev and E. Z. Meilikhov (Energoatomizdat, Moscow, 1991) [in Russian].

    Google Scholar 

  18. N. A. Kuz’mina and Yu. A. Bondarenko, Tr. VIAM 41 (5), 19 (2016). https://doi.org/10.18577/2307-6046-2016-0-5-3-3

    Article  Google Scholar 

  19. J. C. Zhao, L. A. Peluso, M. R. Jackson, and L. Tan, J. Alloys Compd. 360, 183 (2003). https://doi.org/10.1016//S0925-8388(03)00524-3

  20. G. Shao, Intermetallics 12, 655 (2004). https://doi.org/10.1016/j.intermet.2004.03.011

    Article  CAS  Google Scholar 

  21. S. Kashyap, C. S. Tiwary, and K. Chattopadhyay, Mater. Sci. Eng., A 583, 188 (2013). https://doi.org/10.1016/j.msea.2013.06.045

    Article  CAS  Google Scholar 

  22. W. Y. Kim, I. D. Yeo, T. Y. Ra, G. S. Cho, and M. S. Kim, J. Alloys Compd. 364, 186 (2004). https://doi.org/10.1016/S0925-8388(03)00495-X

    Article  CAS  Google Scholar 

  23. K. Niihara, R. Morena, and D. P. H. Hasselman, in Fracture Mechanics of Ceramics, Ed. by R. C. Bradt (Plenum, New York, 1983), p. 97.

    Google Scholar 

  24. B. P. Bewlay, H. A. Lipsitt, M. R. Jackson, W. J. Reeder, and J. A. Sutliff, Metall. Mater. Trans. A 192–193, 534 (1995). https://doi.org/10.1016/0921-5093(95)03299-1

    Article  Google Scholar 

Download references

FUNDING

We are grateful to V.A. Karev for obtaining the Nb–Si–Al cast alloys. The study was carried out according to the subject of scientific research no. 121030100001-3 using equipment of the shared facilities “Center for Physical and Physical-Chemical Methods of Analysis, Investigation of the Properties and Characteristics of a Surface, Nanostructures, Materials, and Products” of the Udmurt Federal Research Center of the Ural Branch of the Russian Academy of Sciences (project unique identifier RFMEFI62119X0035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Sapegina.

Ethics declarations

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sapegina, I.V., Pushkarev, B.E., Tereshkina, S.A. et al. Structure and Properties of Nb–Si–Al Hypoeutectic Alloys Obtained by Aluminothermy at Different Cooling Rates. J. Surf. Investig. 15, 1345–1348 (2021). https://doi.org/10.1134/S1027451021060422

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451021060422

Keywords:

Navigation