Skip to main content
Log in

Abstract

A new method for manufacturing a stamp or a mold, which differs from well-known LIGA technology, is described. They can be used to mold biochips of various plastics. A typical sequence of operations in LIGA technology is as follows: the formation of a thick resistive mask by deep X-ray lithography, the creation of a stamp (or mold) by galvanoplasty and the fabrication of plastic products using a stamp (or mold). This report describes a different sequence of operations: the formation of a thick resistive mask by deep photolithography on the working surface of the blank of a stamp (or a mold), the creation of a stamp relief by plasma chemical etching through a resistive mask, and the stamping (or molding) of plastic products, using the resulting stamp (or mold). A new method for the polymerization of plexiglass from electron-irradiated methyl methacrylate (MMA) prepolymer is also described. It has advantages over polymerization methods using benzoyl peroxide as the initiator of polymerization, because it expands the spectral range of transparency of the resulting plexiglass. This makes it possible to combine biochips produced by this technology with laser-induced fluorescence to detect analyzed samples in a wider spectral range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. A. A. Evstrapov, Ross. Khim. Zh., 55 (2), 99 (2011).

    CAS  Google Scholar 

  2. A. A. Evstrapov and A. L. Bulyanitsa, in Microfluidics: A Lecture Course (Sib. Fed. Univ., Krasnoyarsk, 2015) [in Russian].

    Google Scholar 

  3. Nanofluidics. Nanoscience and Nanotechnology, Ed. by J. B. Edel and A. J. de Mello (Thomas Graham House, Cambridge, 2009).

    Google Scholar 

  4. V. Rodchenkova and I. Shakhnovich, Analitika, No. 3, 60 (2007).

  5. T. M. Zimina, Nano- Mikrosist. Tekh., No. 8, 27 (2007).

  6. T. M. Zimina, Biotekhnosfera, No. 1, 11 (2009).

  7. L. L. James, in BioMEMS and Biomedical Nanotechnology (Springer, Boston, MA, 2006), vol. 1, p. 51. https://doi.org/10.1007/978-0-387-25842-3_3

    Book  Google Scholar 

  8. T. Squires and S. Quake, Rev. Mod. Phys, No. 77, 977 (2005).

    CAS  Google Scholar 

  9. M. J. Madou, Fundamentals of Microfabrication, 2nd ed. (CRC Press, Boca Raton, FL, 2002).

    Book  Google Scholar 

  10. Lab-on-a-Chip Technology. Vol. 1 : Fabrication and Microfluidics, Ed. by K. E. Herold and A. Rasooly (Norwich: Caister Acad., 2009).

    Google Scholar 

  11. H. J. D. L. Santos, Principles and Applications of NanoMEMS Physics (Springer, Dordrecht, 2005).

    Book  Google Scholar 

  12. G. S. Fiorini and D. T. Chiu, BioTechniques 38 (3), 429 (2005).

    Article  CAS  Google Scholar 

  13. I. V. Kukhtevich, A. S. Bukatin, I. S. Mukhin, and A. A. Evstrapov, Nauchno-Tekh. Vestn. S.-Pb. Gos. Univ. Inf. Tekhnol., Mekh. Opt., No. 1 (77), 111 (2012).

  14. B. G. Goldenberg, T. N. Goryachkovskaya, V. S. Eliseev, et al., Poverkhn.: Rentgenovskie, Sinkhrotronnye Neitr. Issled., No. 8, 61 (2008).

  15. S. E. Pel’tek, T. N. Goryachkovskaya, V. M. Popik, et al., Nanotechnol. Russ. 3, 632 (2008).

    Google Scholar 

  16. S. H. Ahn and L. J. Guo, Adv. Mater. 20, 2044 (2008).

    Article  CAS  Google Scholar 

  17. D. V. L. Tolfree, Rep. Prog. Phys. 61, 313 (1998).

    Article  CAS  Google Scholar 

  18. W. Ehrfeld and H. Lehr, Radiat. Phys. Chem. 45 (3), 349 (1995).

    Article  CAS  Google Scholar 

  19. A. N. Gentselev, F. N. Dul’tsev, V. I. Kondrat’ev, and A. G. Lemzyakov, Optoelectron., Instrum. Data Process. 54, 127 (2018).

    Article  Google Scholar 

  20. V. A. Zverev, E. V. Krivopustova, and T. V. Tochilina, Optical Materials. Pt. 2. A Study Guide for Designers of Optical Systems and Devices (SPb NIU ITMO, St. Petersburg, 2013) [in Russian].

Download references

ACKNOWLEDGMENTS

The equipment of the Siberian Synchrotron and Terahertz Radiation Centre (SSTRC) was used.

Funding

This work was completed in terms of the Russian Federation Government task of the Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch, Russian Academy of Sciences (project no. 0237-2019-0001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Gentselev.

Ethics declarations

We have no conflicts of interest to declare.

Additional information

Translated by P. Vlasov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gentselev, A.N., Dultsev, F.N., Varand, A.V. et al. Method for the Fabrication of Biochips. J. Surf. Investig. 14, 1403–1409 (2020). https://doi.org/10.1134/S1027451020060300

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451020060300

Keywords:

Navigation