Skip to main content
Log in

Analysis of the Results of Silicon Sputtering Simulation as Functions of Different Ar–Si Potentials

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The influence of the form of the Ar–Si interatomic potential on the results of simulating the physical sputtering of amorphous Si by low-energy Ar ions is analyzed. The yields of Si sputtering by Ar ions with an energy of 50–300 eV at normal incidence are calculated using the molecular dynamics (LAMMPS software) and the Monte Carlo methods by means of the MOTREV program developed at the Skobeltsyn Institute of Nuclear Physics, the Moscow State University, and used quantum-mechanical elastic-scattering cross sections. The semiempirical Molière and ZBL pair potentials and a potential developed on the basis of density functional theory calculations are applied to describe Ar–Si interaction. The energy dependences of the sputtering yields obtained using different potentials are analyzed in this paper. Conclusions concerning the applicability of the considered Ar—Si interaction potentials to simulation of the physical sputtering of amorphous Si in the indicated range of projectile energies are drawn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. P. Sigmund, Phys. Rev. 184 (2), 383 (1969). https://doi.org/10.1103/PhysRev.184.383

    Article  CAS  Google Scholar 

  2. K. Wittmaack, Phys. Rev. 68 (23), 235211 (2003). https://doi.org/10.1103/PhysRevB.68.235211

    Article  CAS  Google Scholar 

  3. P. C. Zalm, J. Appl. Phys. 54 (5), 2660 (1983). https://doi.org/10.1063/1.332340

    Article  CAS  Google Scholar 

  4. D. V. Lopaev, T. V. Rakhimova, A. T. Rakhimov, A. I. Zotovich, et al., J. Phys. D: Appl. Phys. 51 (2), 02LT02 (2017). https://doi.org/10.1088/1361-6463/aa9c18

    Article  CAS  Google Scholar 

  5. P. Sigmund, Sputtering by ion bombardment: Theoretical concepts, in Sputtering by Particle Bombardment II.Topics in Applied Physics, Vol. 52, Ed. by R. Behrisch (Springer, Berlin, 1981).

    Google Scholar 

  6. R. Behrisch, Sputtering by Particle Bombardment: Experiments and Computer Calculations from Threshold to MeV Energies, in Sputtering by Particle Bombardment.Topics in Applied Physics, Vol. 110, Ed. by R. Behrisch and W. Eckstein (Springer, Berlin–Heidelberg, 2007).

    Google Scholar 

  7. S. Saito, A. M. Ito, A. Takayama, T. H. Kenmotsu, et al., J. Nucl. Mater. 415 (1), S208 (2011). https://doi.org/10.1016/j.jnucmat.201012.233

    Article  CAS  Google Scholar 

  8. A. P. Palov, G. G. Balint-Kurti, E. N. Voronina, and T. V. Rakhimova, J. Vac. Sci. Technol. A 36, 041303 (2018). https://doi.org/10.1116/1.5027387

    Article  CAS  Google Scholar 

  9. R. A. Stansfield, K. Broomfield, and D. C. Clary, Phys. Rev. 39, 7680 (1989).

    Article  CAS  Google Scholar 

  10. G. Molière, Z. Naturforsch. A2, 133 (1947).

    Article  Google Scholar 

  11. J. P. Biersack and J. F. Ziegler, Nucl. Instrum. Methods Phys. Res. 194, 93 (1982).

    Article  CAS  Google Scholar 

  12. K. Wittmaack, J. Appl. Phys. 96 (5), 2632 (2004). https://doi.org/10.1063/1.1776318

    Article  CAS  Google Scholar 

  13. V. I. Shulga, Appl. Surf. Sci. 439, 456 (2018). https://doi.org/10.1016/j.apsusc.2018.01.039

    Article  CAS  Google Scholar 

  14. R. Smith, Atomic and Ion Collisions in Solids and at Surfaces: Theory, Simulation and Applications (Cambridge University Press, New York, 2005).

    Google Scholar 

  15. M. Z. Hossain, J. B. Freund, and H. T. Johnson, Nucl. Instrum. Methods Phys. Res., Sect. B 257 (7), 1061 (2009). https://doi.org/10.1016/j.nimb.2009.01.137

    Article  CAS  Google Scholar 

  16. F. H. Stillinger and T. A. Weber, Phys. Rev. B: Condens. Matter Mater. Phys. 31 (8), 5262 (1985). https://doi.org/10.1103/PhysRevB.31.5262

    Article  CAS  Google Scholar 

  17. V. I. Shulga, Nucl. Instr. Methods. Phys. Res., Sect. B 254 (2), 200 (2007). .https://doi.org/10.1016/j.nimb.2006.11.068

    Article  CAS  Google Scholar 

  18. M. Timonova, B.-J. Lee, and B. J. Thijsse, Nucl. Instrum. Methods Phys. Res., Sect. B 225 (1), 195 (2007). https://doi.org/10.1016/j.nimb.2006.11.023

    Article  CAS  Google Scholar 

  19. D. Humbird and D. B. Graves, Pure Appl. Chem. 74 (3), 419 (2002). https://doi.org/10.1351/pac200274030419

    Article  CAS  Google Scholar 

  20. A. A. Sycheva, E. N. Voronina, and T. V. Rakhimova, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech., 12 (6), 1270 (2018).

    Article  CAS  Google Scholar 

  21. S. Plimpton, J. Comput. Phys. 117, 1 (1995). https://doi.org/10.1006/jcph.1995.1039

    Article  CAS  Google Scholar 

  22. V. Sadovnichy, A. Tikhonravov, Vl. Voevodin, and Vl. Opanasenko, in Contemporary High Performance Computing: From Petascale to Exacsale, Ed. by J. S. Vetter (Chapman & Hall/CRC Computational Science, Boca Raton, USA, 2013), p. 283.

  23. A. Stukovski, Modell. Simul. Mater. Sci. Eng. 18 (1), 015012 (2010). https://doi.org/10.1088/0965-0393/18/1/015012

    Article  Google Scholar 

  24. D. J. Oostra, A. Haring, R. P. van Ingen, and A. E. de Vries, J. Appl. Phys. 64 (1), 315 (1988). https://doi.org/10.1063/1.341429

    Article  CAS  Google Scholar 

  25. M. Balooch, M. Moalem, W. -E. Wang, and A. V. Hamza, J. Vac. Sci. Technol. A 14 (1), 229 (1996). https://doi.org/10.1116/1.579924

    Article  CAS  Google Scholar 

  26. N. A. Kubota, D. J. Economou, and S. J. Plimpton, J. Appl. Phys. 83 (8), 4055 (1998). https://doi.org/10.1063/1.367225

    Article  CAS  Google Scholar 

  27. J. E. Rubio, L. A. Marques, M. Jaraíz, et al., Nucl. Instr. Methods. Phys. Res., Sect. B 102, 301 (1995). https://doi.org/10.1016/0168-583X(95)80157-H

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation grant no. 14-12-01012 and used equipment of the shared research facilities of HPC computing resources at Lomonosov.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Sycheva.

Additional information

Translated by L. Kulman

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sycheva, A.A., Voronina, E.N. & Palov, A.P. Analysis of the Results of Silicon Sputtering Simulation as Functions of Different Ar–Si Potentials. J. Surf. Investig. 13, 1272–1279 (2019). https://doi.org/10.1134/S1027451019060521

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451019060521

Keywords:

Navigation