Skip to main content
Log in

Abstract

The microstructure and crystallographic orientation of aluminum have a significant effect on the morphology of porous alumina films grown on the surface of Al by anodizing. Most existing works regarding the regularities of aluminum anodizing consider metal foils as isotropic media. The novelty of this study lies in the characterization of porous alumina coatings formed on aluminum single crystals with the same orientation, Al(111). Experiments are carried out in 0.3 M oxalic acid in a wide range of anodizing voltages of 20–140 V. Using scanning electron and atomic force microscopy, the dependence on the anodizing voltage of the degree of porous ordering with the formation of a hexagonal array, as well as height-profile parameters of the metal–oxide interface, are shown. The thickness-to-charge ratio for the used anodizing conditions is determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. H. Masuda and K. Fukuda, Science 268, 1466 (1995). https://doi.org/10.1126/science.268.5216.1466

    Article  CAS  Google Scholar 

  2. S. V. Grigor’ev, N. A. Grigor’eva, A. V. Syromyatnikov, K. S. Napol’skii, A. A. Eliseev, A. V. Lukashin, Yu. D. Tret’yakov, and H. Eckerlebe, JETP Lett. 85, 449 (2007). https://doi.org/10.1134/S0021364007090081

    Article  CAS  Google Scholar 

  3. G. Beck and K. Petrikowski, Surf. Coat. Technol. 202, 5084 (2008). https://doi.org/10.1016/j.surfcoat.2008.04.089

    Article  CAS  Google Scholar 

  4. G. Beck and R. Bretzler, Mater. Chem. Phys. 128, 383 (2011). https://doi.org/10.1016/j.matchemphys.2011.03.022

    Article  CAS  Google Scholar 

  5. C. K. Y. Ng and A. H. W. Ngan, Chem. Mater. 23, 5264 (2011). https://doi.org/10.1021/cm202461z

    Article  CAS  Google Scholar 

  6. C. Cheng, K. Y. Ng, N. R. Aluru, and A. H. W. Ngan, J. Appl. Phys. 113, 204903 (2011). https://doi.org/10.1063/1.4807295

    Article  CAS  Google Scholar 

  7. K. S. Napolskii, I. V. Roslyakov, A. Y. Romanchuk, O. O. Kapitanova, A. S. Mankevich, V. A. Lebedev, and A. A. Eliseev, J. Mater. Chem. 22, 11922 (2012). https://doi.org/10.1039/C2JM31710A

    Article  CAS  Google Scholar 

  8. I. V. Roslyakov, D. S. Koshkodaev, A. A. Eliseev, D. Hermida-Merino, V. K. Ivanov, A. V. Petukhov, and K. S. Napolskii, J. Phys. Chem. C. 121, 27511 (2017). https://doi.org/10.1021/acs.jpcc.7b09998

    Article  CAS  Google Scholar 

  9. A. P. Chumakov, I. V. Roslyakov, K. S. Napol’skii, A. A. Eliseev, A. V. Lukashin, H. Eckerlebe, W. G. Bouwman, D. V. Belov, A. I. Okorokov, and S. V. Grigoriev, Nanotechnol. Russia 8, 631 (2013). https://doi.org/10.1134/S1995078013050029

    Article  Google Scholar 

  10. I. V. Roslyakov, A. A. Eliseev, E. V. Yakovenko, A. V. Zabelin, and K. S. Napolskii, J. Appl. Crystallogr. 46, 1705 (2013). https://doi.org/10.1107/S002188981302579X

    Article  CAS  Google Scholar 

  11. I. V. Roslyakov, D. S. Koshkodaev, A. A. Eliseev, D. Hermida-Merino, A. V. Petukhov, and K. S. Napolskii, J. Phys. Chem. C 120, 19698 (2016). https://doi.org/10.1021/acs.jpcc.6b05268

    Article  CAS  Google Scholar 

  12. R. A. Mirzoev, A. D. Davydov, E. S. Zarubenko, S. I. Vystupov, and E. S. Panteleev, Electrochim. Acta 218, 74 (2016). https://doi.org/10.1016/j.electacta.2016.09.115

    Article  CAS  Google Scholar 

  13. R. A. Mirzoev, A. D. Davydov, S. I. Vystupov, and T. B. Kabanova, Electrochim. Acta 294, 276 (2016). https://doi.org/10.1016/j.electacta.2018.10.041

    Article  CAS  Google Scholar 

  14. E. O. Gordeeva, I. V. Roslyakov, A. I. Sadykov, T. A. Suchkova, D. I. Petukhov, T. B. Shatalova, and K. S. Napolskii, Russ. J. Electrochem. 54, 990 (2018). https://doi.org/10.1134/S0424857018130194

    Article  CAS  Google Scholar 

  15. I. V. Roslyakov, N. S. Kuratova, D. S. Koshkodaev, D. Hermida-Merino, A. V. Lukashin, and K. S. Napolskii, J. Surf. Invest.: X-Ray Synchrotron Neutron Tech. 10, 191 (2016). https://doi.org/10.7868/S0207352816020098

    Article  CAS  Google Scholar 

  16. L. Zaraska, W. J. Stepniowski, E. Ciepiela, and G. D. Sulka, Thin Solid Films 534, 155 (2013). https://doi.org/10.1016/j.tsf.2013.02.056

    Article  CAS  Google Scholar 

  17. E. O. Gordeeva, I. V. Roslyakov, and K. S. Napolskii, Electrochim. Acta 307, 13 (2017). https://doi.org/10.1016/j.electacta.2019.03.098

    Article  CAS  Google Scholar 

  18. G. Knornschild, A. A. Poznyak, A. G. Karoza, and A. Mozalev, Surf. Coat. Technol. 275, 17 (2015). https://doi.org/10.1016/j.surfcoat.2015.04.030

    Article  CAS  Google Scholar 

  19. I. V. Roslyakov, E. O. Gordeeva, and K. S. Napolskii, Electrochim. Acta 241, 362 (2017). https://doi.org/10.1016/j.electacta.2017.04.140

    Article  CAS  Google Scholar 

  20. www.eng.fnm.msu.ru/en/software/

  21. K. S. Napolskii, I. V. Roslyakov, A. A. Eliseev, D. V. Byelov, A. V. Petukhov, N. A. Grigoryeva, W. G. Bouwman, A. V. Lukashin, A. P. Chumakov, and S. V. Grigoriev, J. Phys. Chem. C 115, 23726 (2011). https://doi.org/10.1021/jp207753v

    Article  CAS  Google Scholar 

  22. S. E. Kushnir, T. Y. Pchelyakova, and K. S. Napolskii, J. Mater. Chem. C 6, 12192 (2018). https://doi.org/10.1039/C8TC04246B

    Article  CAS  Google Scholar 

  23. J.-R. Sack and J. Urrutia, Handbook of Computational Geometry (North-Holland, Amsterdam, 2000).

    Google Scholar 

  24. J. R. Borba, C. Brito, P. Migowski, T. B. Vale, D. A. Stariolo, S. Teixeira, and A. F. Feil, J. Phys. Chem. C 117, 246 (2013). https://doi.org/10.1021/jp308542d

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to V.K. Ivanov and A.E. Baranchikov (Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences) for the opportunity to analyze samples using electron backscatter diffraction on equipment of the Center of Collective Usage, Physical Methods of Research, Institute of General and Inorganic Chemistry, Russian Academy of Sciences.

Funding

This work was supported by the Russian Science Foundation (project no. 17-73-10473) and the Russian Foundation for Basic Research (project no. 19-33-70091_mol_a_mos) in relation to establishing coefficients relating the thickness of the porous layer to the passed charge density.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Roslyakov.

Additional information

Translated by L. Mosina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roslyakov, I.V., Koshkodaev, D.S., Lebedev, V.A. et al. Porous Anodic Alumina Films Grown on Al(111) Single Crystals. J. Surf. Investig. 13, 955–961 (2019). https://doi.org/10.1134/S1027451019050343

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451019050343

Keywords:

Navigation