Skip to main content
Log in

On the Role of the Proton Component in the Evolution of the Morphology of K-208 Glass under Combined Electron–Proton Irradiation

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

By the methods of atomic force microscopy (AFM) we investigate the surfaces of samples of K-208 glass after separate and combined irradiation in a vacuum chamber with a residual pressure of pv = 10−4 Pa with protons and electrons with energies of 20 and 30 keV, respectively. At flux densities of protons φp and electrons φe from 1011 to 5 × 1012 cm–2 s–1, the fluences of the particles Φp and Φe vary in the range of 1014–5 × 1016 cm–2. The obtained results allow us to state the following: the character of changes in the morphology of the samples under the action of protons and electron–proton plasma for φp <5 × 1012 cm–2 s–1 at φe: φp < 3 coincides and is due to radiation-stimulated stresses, reorganization of the glass network and the formation of gas-filled bubbles; at φp ≥ 5 × 1012 cm–2 s–1, the change in the morphology of the glass is determined by the mass transfer caused by local heating of the near-surface layer. In the case of proton irradiation, a model is proposed that describes the process of the field migration of sodium ions, which plays a key role in restructuring of the glass microstructure and the release of atoms of non-bridging oxygen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. O. A. Podsvirov, A. I. Ignatiev, A. V. Nashchekin, N. V. Nikonorov, A. I. Sidorov, V. A. Tsekhomskii, O. A. Usov, and A. V. Vostokov, Nucl. Instrum. Methods Phys. Res., Sect. B 268, 3103 (2010). https://doi.org/10.1016/j.nimb.2010.05.061.

  2. A. I. Sidorov, A. V. Nashchekin, V. N. Nevedomsky, O. A. Usov, and O. A. Podsvirov, Int. J. Nanosci. 10, 1265 (2011). https://doi.org/10.1142/ S0219581X11008411.

    Article  Google Scholar 

  3. D. C. Ferguson and S. C. Wimberly, in Proc. 50th AIAA Aerospace Sciences Meeting (Grapevine, TX, 2013), p. AIAA 2013. doi 10.2514/6.2013-81010.2514/6.2013-810

  4. Hirokazu Masui, Kazuhiro Toyoda, and Mengu Cho, IEEE Trans. Plasma Sci. 36, 2387 (2008). doi 10.1109/TPS.2008.2003191

    Article  Google Scholar 

  5. R. P. Khasanshin, L. S. Novikov, and S. B. Korovin, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 11, 917 (2017). doi 10.1134/S102745101705007X

    Article  Google Scholar 

  6. O. Gedeon, J. Zemek, and K. Jurek, J. Non-Cryst. Solids 354, 1169 (2008). doi 10.1016/j.jnoncrysol.2006.12.125

    Article  Google Scholar 

  7. X. Meyza, D. Goeuriot, C. Guerret-Piécourt, D. Tréheux, and H.-J. Fitting, J. Appl. Phys. 94, 5384 (2003). doi 10.1063/1.1613807

    Article  Google Scholar 

  8. O. Gedeon, K. Jurek, and I. Drbohlav, J. Non-Cryst. Solids 353, 1946 (2007). doi 10.1016/j.jnoncrysol.2007.01.058

    Article  Google Scholar 

  9. P. N. Grillot and W. J. Rosenberg, Appl. Opt. 28, 4473 (1989). doi 10.1364/AO.28.004473

    Article  Google Scholar 

  10. P. R. Silverglate, E. F. Zalewski, and P. Petrone, Proc. SPIE 1761, 46 (1993). doi 10.1117/12.138944

    Article  Google Scholar 

  11. G. Naletto, A. Boscolo, J. Wyss, and A. Quaranta, Appl. Opt. 42, 3970 (2003). doi 10.1364/AO.42.003970

    Article  Google Scholar 

  12. R. H. Khasanshin, L. S. Novikov, L. S. Gatsenko, and Ya. B. Volkova, Inorg. Mater.: Appl. Res. 6, 438 (2015). doi 10.1134/S2075113315050068

    Article  Google Scholar 

  13. R. H. Khasanshin, L. S. Novikov, and S. B. Korovin, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 10, 1001 (2016). doi 10.1134/S102745101605030X

    Article  Google Scholar 

  14. F. Liebau, Structural Chemistry of Silicates (Springer, Berlin, 1985).

    Book  Google Scholar 

  15. E. I. Kamitsos and G. D. Chryssikos, Solid State Ionics 105, 75 (1998). https://doi.org/10.1016/S0167-2738(97)00451-7.

    Article  Google Scholar 

  16. E. I. Kamitsos, J. Phys. Chem. 94, 1604 (1989). doi 10.1021/j100341a083

    Article  Google Scholar 

  17. R. D. Shannon, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 32, 751 (1976). https://doi.org/10.1107/S0567739476001551.

    Article  Google Scholar 

  18. R. D. Shannon and C. T. Prewitt, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 25, 925 (1969). https://doi.org/10.1107/S0567740869003220.

    Article  Google Scholar 

  19. R. D. Shannon and C. T. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 26, 1046 (1970). https://doi.org/10.1107/S0567740870003576.

  20. J. E. Shelby and D. E. Day, J. Am. Ceram. Soc. 52, 169 (1969). doi 10.1111/j.1151-2916.1969.tb13358.x

    Article  Google Scholar 

  21. O. L. Anderson and D. A. Stuart, J. Am. Ceram. Soc. 37, 573 (1954). doi 10.1111/j.1151-2916.1954.tb13991.x

    Article  Google Scholar 

  22. G. I. Skanavi, Dielectric Polarization and Losses in Glasses and Ceramic Materials with High Dielectric Permeability (Gosenergoizdat, Moscow, Leningrad, 1952) [in Russian].

    Google Scholar 

  23. A. K. Varshneya, in Fundamentals of Inorganic Glasses, Ed. by A. K. Varshneya (Society of Glass Technology, Sheffield, 2006), pp. 390–397.

    Google Scholar 

  24. G. Tomandl and H. A. Schaeffer, J. Non-Cryst. Solids 73, 179 (1985). https://doi.org/10.1016/0022-3093(85)90345-X.

    Article  Google Scholar 

  25. J. O. Isard, J. Non-Cryst. Solids 246, 16 (1999). https://doi.org/10.1016/S0022-3093(99)00036-8.

    Article  Google Scholar 

  26. A. Kudlinski, Y. Quiquempois, and G. Martinelli, Opt. Express 13, 8015 (2005).

    Article  Google Scholar 

  27. R. H. Doremus, Appl. Phys. Lett. 87, 232904 (2005). doi 10.1063/1.2140090

    Article  Google Scholar 

  28. L. Skuja, K. Kajihara, M. Hirano, A. Saitoh, and H. Hosono, J. Non-Cryst. Solids 352, 2297 (2006). https://doi.org/10.1016/j.jnoncrysol.2006.01.101.

    Article  Google Scholar 

  29. L. Skuja, K. Kajihara, M. Hirano, and H. Hosono, Nucl. Instrum. Methods Phys. Res., Sect. B 266, 2971 (2008). doi 10.1016/j.nimb.2008.03.150

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. H. Khasanshin.

Additional information

Translated by N. Saetova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khasanshin, R.H., Novikov, L.S. On the Role of the Proton Component in the Evolution of the Morphology of K-208 Glass under Combined Electron–Proton Irradiation. J. Surf. Investig. 12, 1088–1098 (2018). https://doi.org/10.1134/S1027451018050452

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451018050452

Keywords:

Navigation