Skip to main content
Log in

Method of analysis of neutron polarization using noncentrosymmetric cubic helicoidal magnets

  • Published:
Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

A new way of analyzing the polarization of thermal and cold neutron beams, based on the dependence of the neutron-scattering cross section on the neutron polarization upon diffraction from a magnetic spiral, is proposed. In this method, the working element of the neutron-polarization analyzer is a single-crystal noncentrosymmetric cubic helicoidal MnSi magnet, the spin spiral in which is formed at T < T c (T c = 29 K) in the magnetic-field range H < H C2 ∼ 500 mT. Since the spiral period d in MnSi is 180 Å, thermal and cold neutrons with wavelengths λ ≤ 2d diffract from this structure. It is established that the efficiency of neutron-polarization analysis is as high as 100% with the experimental geometry when the polarization vector P is parallel to the scattering vector Q.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. V. Maleev, Phys. Usp. 45, 569 (2002).

    Article  Google Scholar 

  2. F. Bloch, Phys. Rev. 50, 259 (1936).

    Article  Google Scholar 

  3. D. J. Hughes, J. R. Wallace, and R. H. Holzmann, Phys. Rev. 73, 1277 (1947).

    Article  Google Scholar 

  4. L. V. Tarasov and I. I. Gurevich, Low-Energy Neutron Physics (North-Holland, Amsterdam 1968; Nauka, Moscow, 1965).

    Google Scholar 

  5. C. G. Shull, E. O. Wollan, and W. C. Koehler, Phys. Rev. 81, 626 (1951).

    Article  Google Scholar 

  6. S. Tomiyoshi, Y. Yamaguchi, and Y. Ito, Phys. B: Condens. Matter 213–214, 932 (1995).

    Article  Google Scholar 

  7. P. Boni, D. Clemens, M. Senthil Kumar, and C. Pappas, Phys. B: Condens. Matter 267–268, 320 (1999).

    Article  Google Scholar 

  8. J. W. Lynn, J. K. Kjems, L. Passell, A. M. Saxena, and B. P. Schoenborn, J. Appl. Crystallogr. 9, 454 (1976).

    Article  Google Scholar 

  9. C. F. Majkrzak and L. Passell, Acta Crystallogr., Sect. A 41, 41 (1985).

    Article  Google Scholar 

  10. Th. Krista, S. J. Kennedy, T. J. Hicks, and F. Mezei, Phys. B: Condens. Matter 241243, 82 (1997).

    Article  Google Scholar 

  11. T. E. Chupp, J. Neutron Res. 6, 205 (1997).

    Article  Google Scholar 

  12. T. Shinohara, J. Suzuk, T. Oku, S. Takata, H. Kira, K. Suzuya, K. Aizawa, M. Arai, T. Otomo, and M. Sugiyama, Phys. B: Condens. Matter 404, 2640 (2009).

    Article  Google Scholar 

  13. A. Ioffe, G. Gordeev, B. Ibrayev, Th. Krist, and F. Mezei, Phys. B: Condens. Matter 234–236, 1071 (1997).

    Article  Google Scholar 

  14. S. Funahashi, Nucl. Instrum. Methods Phys. Res. 137, 99 (1976).

    Article  Google Scholar 

  15. D. B. McWhan, Rev. Phys. Appl. 19, 715 (1984).

    Article  Google Scholar 

  16. L. D. Cussen, D. J. Goossens, and T. J. Hicks, Nucl. Instrum. Methods Phys. Res. A 440, 409 (2000).

    Article  Google Scholar 

  17. P. J. Webster and K. R. A. Ziebeck, J. Magn. Magn. Mater. 15–18, 473 (1980).

    Article  Google Scholar 

  18. F. Tasset and E. Ressouche, Nucl. Instrum. Methods Phys. Res. A 359, 537 (1995).

    Article  Google Scholar 

  19. T. Okua, K. Sakaia, T. Adachia, K. Ikedaa, H. M. Shimizua, R. Maruyamac, M. Hinoc, S. Tasakic, Y. Kiyanagid, T. Kamiyamad, H. Iwasad, K. Sasakid, T. Inoe, M. Furusakae, D. Yamazakif, J. Suzukif, and T. Ebisawaf, Phys. B: Condens. Matter 335, 226 (2003).

    Article  Google Scholar 

  20. S. V. Grigoriev, S. V. Maleyev, A. I. Okorokov, Yu. O. Chetverikov, P. Boni, R. Georgii, D. Lamago, H. Eckerlebe, and K. Pranzas, Rev. Phys. B 74, 214414 (2006).

    Article  Google Scholar 

  21. B. Lebech, J. Bernhard, and T. Freltoft, J. Phys.: Condens. Matter 1, 6105 (1989).

    Google Scholar 

  22. N. Kanazawa, Y. Onose, T. Arima, D. Okuyama, K. Ohoyama, S. Wakimoto, K. Kakurai, S. Ishiwata, and Y. Tokura, Phys. Rev. Lett. 106, 156603 (2011).

    Article  Google Scholar 

  23. N. Kanazawa, J.-H. Kim, D. S. Inosov, J. S. White, N. Egetenmeyer, J. L. Gavilano, S. Ishiwata, Y. Onose, T. Arima, B. Keimer, and Y. Tokura, Phys. Rev. B 86, 134425 (2012).

    Article  Google Scholar 

  24. O. L. Makarova, A. V. Tsvyashchenko, G. Andre, F. Porcher, L. N. Fomicheva, N. Rey, and I. Mirebeau, Phys. Rev. B 85, 205205 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Chubova.

Additional information

Original Russian Text © N.M. Chubova, V.A. Dyadkin, E.V. Moskvin, S.V. Grigoriev, 2014, published in Poverkhnost’. Rentgenovskie, Sinkhrotronnye i Neitronnye Issledovaniya, 2014, No. 10, pp. 64–70.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chubova, N.M., Dyadkin, V.A., Moskvin, E.V. et al. Method of analysis of neutron polarization using noncentrosymmetric cubic helicoidal magnets. J. Surf. Investig. 8, 1020–1026 (2014). https://doi.org/10.1134/S1027451014050267

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451014050267

Keywords

Navigation