Skip to main content
Log in

Optical properties of anodic aluminum oxide produced in a complex electrolyte

  • Published:
Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

Features of the absorption, transmission, photoluminescence, and infrared (IR) spectra of anodic aluminum oxide (AAO) formed in a complex electrolyte and annealed at 800, 900, 1000, and 1300°C are investigated. The variations in the phase composition changes of the anodic aluminum oxide are reflected in the respective features of its optical properties. A decrease in the transmission coefficient in the visible range of the spectrum is shown for the phase series: amorphous AOA → γ-Al2O3, γ-, θ-, δ-Al2O3 mixture → α-Al2O3. It is established that the highest absorption coefficient is characteristic of α-Al2O3, and the amorphous samples are the most transparent in the visible range. An intensive luminescence band in the red region of the spectrum with maxima at 678 and 694 nm is found for α-Al2O3. The emergence of this band is explained by the presence of octahedrally coordinated Mn+4 and Cr+3 impurity ions in the structure. A luminescence band at 700–800 nm is observed for the mixture of low-temperature phases. Intense luminescence in the region 350–500 nm is found for amorphous AAO and γ-Al2O3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. I. Mukhurov, Alumina Micro-Nanostructures for Microelectromechanical Systems (Bestprint, Minsk, 2004), p. 166 [in Russian].

    Google Scholar 

  2. I. L. Grigorishin, I. F. Kotova, and N. I. Mukhurov, Appl. Surf. Sci. 111, 101 (1997).

    Google Scholar 

  3. N. I. Mukhurov, G. I. Efremov, and S. P. Zhvavyi, Nano-Mikrosist. Tekh., No. 3, 39 (2011).

    Google Scholar 

  4. J. Juhasz and A. Mizsei, Proc. Eng. 5, 701 (2010).

    Article  Google Scholar 

  5. W. M. Azevedo, D. D. de Carvalho, E. A. de Vasconcelos, and E. F. Silva, Jr., Appl. Surf. Sci. 234, 457 (2004).

    Google Scholar 

  6. I. L. Grigorishin, N. I. Mukhurov, P. P. Mardilovich, and A. I. Trokhimets, Vestn. AN BSSR, Ser. Fiz.-Mat. Nauk, No. 3, 61 (1984).

    Google Scholar 

  7. V. S. Kortov, A. E. Ermakov, A. F. Zatsepin, M. A. Uimin, S. V. Nikiforov, A. A. Mysik, and V. S. Gaviko, Phys. Solid State 50, 957 (2008).

    Article  Google Scholar 

  8. Y. Yamamoto, N. Baba, and S. Tajima, Nature 289, 572 (1981).

    Article  Google Scholar 

  9. T. Gao, G. Meng, and L. Zhang, J. Phys.: Condens. Matter, No. 15, 2071 (2003).

    Google Scholar 

  10. V. T. Belov and E. A. Kopylova, Zh. Neorg. Khim. 24, 291 (1979).

    Google Scholar 

  11. H. Masuda, H. Yamada, M. Satoh, H. Asoh, M. Nakao, and T. Tamamura, Appl. Phys. Lett. 71, 2770 (1997).

    Article  Google Scholar 

  12. G. E. Thompson and G. C. Wood, Nature 290(5803), 230 (1981).

    Article  Google Scholar 

  13. A. Kirchner, K. J. D. MacKenzie, I. W. M. Brown, T. Kemmit, and M. E. Bowden, J. Membr. Sci. 287, 264 (2007).

    Article  Google Scholar 

  14. I. V. Gasenkova, N. I. Mazurenko, and E. V. Ostapenko, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 5, 1005 (2011).

    Article  Google Scholar 

  15. I. V. Gasenkova, N. I. Mazurenko, and E. V. Ostapenko, Dokl. BGUIR, No. 1, 43 (2011).

    Google Scholar 

  16. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds (Wiley, New York, 1986; Mir, Moscow, 1991).

    Google Scholar 

  17. L. I. Lafer, V. I. Yakerson, and A. N. Rubinshtein, Izv. Akad. Nauk SSSR, Ser. Khim., No. 11, 2424 (1967).

    Google Scholar 

  18. I. V. Gasenkova and E. V. Ostapenko, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 7, 536 (2013).

    Article  Google Scholar 

  19. Y. Du, W. L. Cai, C. M. Mo, J. Chen, L. D. Zhang, and X. G. Zhu, Appl. Phys. Lett. 74, 2951 (1999).

    Article  Google Scholar 

  20. T. V. Perevalov, O. E. Tereschenko, V. A. Gritsenko, V. A. Pustovarov, A. P. Yeliseyev, Chanjin Park, Jeong Hee Han, and Choongman Lee, J. Appl. Phys. 108, 013501 (2010).

    Article  Google Scholar 

  21. D. Liu, S. J. Clark, and J. Robertson, Appl. Phys. Lett. 96, 032905 (2010).

    Article  Google Scholar 

  22. W. Lee, R. Ji, U. Gosele, and K. Nielsch, Nature Mater. 5, 741 (2006).

    Article  Google Scholar 

  23. V. O. Stoyanovskii and V. N. Snytnikov, Kinet. Catal. 50, 450 (2009).

    Article  Google Scholar 

  24. A. I. Syurdo, I. I. Mil’man, V. A. Pustovarov, V. S. Kortov, A. S. Kaigorodov, and V. R. Khrustov, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 1/3, 284 (2011).

    Google Scholar 

  25. A. B. Kulinkin, S. P. Feofilov, and R. I. Zakharchenya, Phys. Solid State 42, 857 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Gasenkova.

Additional information

Original Russian Text © I.V. Gasenkova, E.V. Ostapenko, N.I. Mazurenko, 2014, published in Poverkhnost’. Rentgenovskie, Sinkhrotronnye i Neitronnye Issledovaniya, 2014, No. 7, pp. 18–23.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gasenkova, I.V., Ostapenko, E.V. & Mazurenko, N.I. Optical properties of anodic aluminum oxide produced in a complex electrolyte. J. Surf. Investig. 8, 636–640 (2014). https://doi.org/10.1134/S1027451014040053

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451014040053

Keywords

Navigation