Skip to main content
Log in

Luminescence and structure of nanosized inclusions formed in SiO2 layers under double implantation of silicon and carbon ions

  • Published:
Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

Luminescent and structural characteristics of SiO2 layers exposed to double implantation by Si+ and C+ ions in order to synthesize nanosized silicon carbide inclusions have been investigated by the photoluminescence, electron spin resonance, transmission electron microscopy, and electron spectroscopy methods. It is shown that the irradiation of SiO2 layers containing preliminary synthesized silicon nanocrystals by carbon ions is accompanied by quenching the nanocrystal-related photoluminescence at 700–750 nm and by the enhancement of light emission from oxygen-deficient centers in oxide in the range of 350–700 nm. Subsequent annealing at 1000 or 1100°C results in the healing of defects and, correspondingly, in the weakening of the related photoluminescence peaks and also recovers in part the photoluminescence of silicon nanocrystals if the carbon dose is less than the silicon dose and results in the intensive white luminescence if the carbon and silicon doses are equal. This luminescence is characterized by three bands at ∼400, ∼500, and ∼625 nm, which are related to the SiC, C, and Si phase inclusions, respectively. The presence of these phases has been confirmed by electron spectroscopy, the carbon precipitates have the sp 3 bond hybridization. The nanosized amorphous inclusions in the Si+ + C+ implanted and annealed SiO2 layer have been revealed by high-resolution transmission electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. Pavesi, Mater. Today 8(1), 18 (2005).

    Article  CAS  MathSciNet  Google Scholar 

  2. R. F. Steimle, R. Muralidhar, R. Rao, et al., Microelectronics Reliability 47, 585 (2007).

    Article  CAS  Google Scholar 

  3. B. Garrido, M. Lopez, A. Perez-Rodrguez, et al., Nucl. Instrum. Methods. Phys. Res. B 216, 213 (2004).

    Article  ADS  CAS  Google Scholar 

  4. T. Shimizu-Iwayama, S. Nakao, and K. Saitoh, Appl. Phys. Lett. 65, 1814 (1994).

    Article  ADS  CAS  Google Scholar 

  5. D. I. Tetelbaum, O. N. Gorshkov, A. V. Ershov, et al., Thin Solid Films 515(1–2), 333 (2006).

    Article  ADS  CAS  Google Scholar 

  6. D. I. Tetel’baum, A. N. Mikhailov, O. N. Gorshkov, et al., Nanotekhnika, No. 3, 36 (2006).

  7. J. Zhao, D. S. Mao, Z. X. Lin, et al., Appl. Phys. Lett. 73, 1838 (1998).

    Article  ADS  CAS  Google Scholar 

  8. O. Gonzalez-Varona, A. Perez-Rodriguez, B. Garrido, et al., Nucl. Instrum. Methods. Phys. Res. B 161–163, 904 (2000).

    Article  Google Scholar 

  9. L. Rebohle, T. Gebel, H. Frob, et al., Appl. Surf. Sci. 184, 156 (2001).

    Article  ADS  CAS  Google Scholar 

  10. A. Perez-Rodriguez, O. Gonzalez-Varona, B. Garrido, et al., J. Appl. Phys. 94, 254 (2003).

    Article  ADS  CAS  Google Scholar 

  11. J. S. Shor, L. Bemis, A. D. Kuttz, et al., J. Appl. Phys. 76, 4045 (1994).

    Article  ADS  CAS  Google Scholar 

  12. L. J. Mitchell, F. Naab, O. W. Holland, et al., J. Non-Cryst. Solids 352, 2562 (2006).

    Article  ADS  CAS  Google Scholar 

  13. G. A. Kachurin, V. A. Volodin, D. I. Tetel’baum, et al., Fiz. Tekh. Poluprovodn. 39, 582 (2005) [Semiconductors 39, 552 (2005)].

    Google Scholar 

  14. J. F. Ziegler, J. Appl. Phys. 85, 1249 (1999).

    Article  ADS  CAS  Google Scholar 

  15. D. L. Wainstein and A. I. Kovalev, Surf. Interf. Anal. 34, 230 (2002).

    Article  CAS  Google Scholar 

  16. L. Skuja, J. Non-Cryst. Solids 149(1–2), 77 (1992).

    Article  ADS  CAS  Google Scholar 

  17. V. B. Sulimov and V. O. Sokolov, J. Non-Cryst. Solids 191, 260 (1995).

    Article  ADS  CAS  Google Scholar 

  18. T. Bakos, S. N. Rashkeev, and S. T. Pantelides, Phys. Rev. B 70, 075203 (2004).

    Article  ADS  Google Scholar 

  19. M. Ya. Valakh, V. A. Yukhimchuk, V. Ya. Bratus, et al., J. Appl. Phys. 85, 168 (1999).

    Article  ADS  CAS  Google Scholar 

  20. G. A. Kachurin, S. G. Yanovskaya, M.-O. Ruault, et al., Fiz. Tekh. Poluprovodn. 34, 1004 (2000) [Semiconductors 34, 965 (2000)].

    Google Scholar 

  21. G. A. Kachurin, A. F. Leier, K. S. Zhuravlev, et al., Fiz. Tekh. Poluprovodn. 32, 1371 (1998) [Semiconductors 34, 1229 (2000)].

    CAS  Google Scholar 

  22. H. Rinnert, M. Vergnat, G. Marchal, et al., Appl. Phys. Lett. 72, 3157 (1998).

    Article  ADS  CAS  Google Scholar 

  23. P. Mutti, G. Ghislotti, S. Bertoni, et al., Appl. Phys. Lett. 66, 851 (1995).

    Article  ADS  CAS  Google Scholar 

  24. S. S. Lau, J. Vac. Sci. Technol. 15(5), 165 (1978).

    Article  Google Scholar 

  25. J. Y. Fan, X. L. Wu, and P. K. Chu, Prog. Mater. Sci. 51, 983 (2006).

    Article  CAS  Google Scholar 

  26. Ion Implantation, Ed. by J. K. Hirvonen, Treatise on Mater. Sci. and Technol. (Acad. Press, London, 1980; Metallurgiya, Moscow, 1985), Vol. 18.

    Google Scholar 

  27. S. Muto and T. Tanabe, J. Appl. Phys. 93, 3765 (2003).

    Article  ADS  CAS  Google Scholar 

  28. N.-M. Park, T.-S. Kim, and S.-J. Park, Appl. Phys. Lett. 78, 2575 (2001).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © D.I. Tetelbaum, A.N. Mikhaylov, A.I. Belov, V.K. Vasiliev, A.I. Kovalev, D.L. Wainshtein, Y. Golan, A. Osherov, 2009, published in Poverkhnost’. Rentgenovskie, Sinkhrotronnye i Neitronnye Issledovaniya, No. 9, pp. 50–57.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tetelbaum, D.I., Mikhaylov, A.N., Belov, A.I. et al. Luminescence and structure of nanosized inclusions formed in SiO2 layers under double implantation of silicon and carbon ions. J. Surf. Investig. 3, 702–708 (2009). https://doi.org/10.1134/S1027451009050073

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451009050073

Keywords

Navigation