Skip to main content
Log in

Validation of TROPOMI Orbital Observations of the CO Total Column by Ground-Based Measurements at the OIAP Stations in Moscow and Zvenigorod

  • REMOTE SENSING OF ATMOSPHERE, HYDROSPHERE, AND UNDERLYING SURFACE
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

Carbon monoxide (CO) total column (TC) measurements of the TROPOMI high-resolution orbital spectrometer have been validated by ground-based spectroscopic measurements at sites of the A.M. Obukhov Institute of Atmospheric Physics (OIAP), Russian Academy of Sciences, in Moscow and Zvenigorod for the period from June 28, 2018, to December 31, 2021. Correlation coefficients (R) between TROPOMI orbital data and ground-based stationary data are determined and analyzed. The high values of the correlation coefficient are obtained (R ~ 0.81–0.97) depending on the observation point, spatial averaging, and filtration applied. For different averaging of satellite data, the dependences of correlation parameters on the orbital angles, underlying surface albedo, and the height of atmospheric boundary layer are being investigated. No influence of albedo on the correlation parameters of orbital and ground-based measurements is found for both observation sites. No significant dependence of correlation parameters on the viewing zenith angle is detected either. However, the correlation coefficients depend on the viewing azimuth angles and the height of the atmospheric boundary layer. An increase in the correlation is obtained during observations at viewing azimuth angles of less than 40° (up to R ~ 0.97), as well as under an increase in the height of the atmospheric boundary layer (up to R ~ 0.90).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. IPCC Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, Cambridge, 2021).

  2. P. C. Novelli, K. A. Masarie, and P. M. Lang, “Distributions and recent changes in carbon monoxide in the lower troposphere,” J. Geophys. Res.: Atmos. 103 (19), 015–033 (1998).

  3. D. J. Jacob, Introduction to Atmospheric Chemistry (Princeton University Press, Princeton, New Jersey, 1999).

    Google Scholar 

  4. The Future of Atmospheric Chemistry Research: Remembering Yesterday, Understanding Today, Anticipating Tomorrow (The National Academies Press, Washington, DC, 2016). https://doi.org/10.17226/23573

  5. B. R. Gurjar, T. M. Butler, M. G. Lawrence, and J. Lelieveld, “Evaluation of emissions and air quality in megacities,” Atmos. Environ. 42, 1593–1606 (2008).

    Article  ADS  Google Scholar 

  6. D. Wunch, P. O. Wennberg, G. C. Toon, G. Keppel-Aleks, and Y. G. Yavin, “Emissions of greenhouse gases from a North American megacity,” Geophys. Rev. Lett. 36 (2009). https://doi.org/10.1029/2009GL039825

  7. M. S. Johnson, K. Strawbridge, K. E. Knowland, Ch. Keller, and M. Travis, “Long-range transport of Siberian biomass burning emissions to North America during FIREX-AQ,” Atmos. Environ. 252 (118241) (2021). https://doi.org/10.1016/j.atmosenv.2021.118241

  8. Q. Hu, Ph. Goloub, I. Veselovskii, J.-A. Bravo-Aranda, I. E. Popovici, Th. Podvin, M. Haeffelin, A. Lopatin, O. Dubovik, Ch. Pietras, X. Huang, B. Torres, and Ch. Chen, “Long-range-transported Canadian smoke plumes in the lower stratosphere over northern France,” Atmos. Chem. Phys. 19, 1173–1193 (2019). https://doi.org/10.5194/acp-19-1173-2019

    Article  ADS  Google Scholar 

  9. Z. Jiang, J. R. Worden, H. Worden, M. A. Deeter, D. B. Jones, A. F. Arellano, and D. K. Henze, “A fifteen year record of CO emissions constrained by M-OPITT CO observations,” Atmos. Chem. Phys. 17, 4565–4583 (2017). https://doi.org/10.5194/acp-17-4565-2017

    Article  ADS  Google Scholar 

  10. V. S. Rakitin, N. F. Elansky, P. Wang, G. Wang, N. V. Pankratova, Y. A. Shtabkin, A. I. Skorokhod, A. N. Safronov, M. V. Makarova, and E. I. Grechko, “Changes in trends of atmospheric composition over urban and background regions of Eurasia: Estimates based on spectroscopic observations,” Geography. Environ. Sustain. 11, 84–96 (2018). https://doi.org/10.24057/2071-9388-2018-11-2-84-96

    Article  Google Scholar 

  11. M. N. Deeter, L. K. Emmons, G. Franci, D.-P. Edwaard, J.-C. Gille, J. Warner, B. Khattatov, D.-C. Zinskin, J.‑F. Lamarque, S.-P. Ho, V. Yundin, J.-L. Attie, D. Packman, Jie Chen, D.-D. Mao, and J. Drummond, “Operational carbon monoxide retrieval algorithm and selected results for the MOPITT instrument,” J. Geophys. Res. 108 (D14) (2003). https://doi.org/10.1029/2002JD003186

  12. L. N. Yurganov, W. W. McMillan, A. V. Dzhola, E. I. Grechko, N. B. Jones, and G. R. van der Werf, “Global AIRS and MOPITT CO measurements: Validation, comparison, and links to biomass burning variations and carbon cycle,” J. Geophys. Res.: Atmos. 113 (90), D09301 (2008). https://doi.org/10.1029/2007JD009229

    Article  ADS  Google Scholar 

  13. L. N. Yurganov, V. Rakitin, A. Dzhola, T. August, E. Fokeeva, M. George, G. Gorchakov, E. Grechko, S. Hannon, A. Karpov, L. Ott, E. Semutnikova, R. Shumsky, and L. Strow, “Satellite- and ground-based CO total column observations over 2010 Russian fires: Accuracy of top-down estimates based on thermal IR satellite data,” Atmos. Chem. Phys. 11, 7925−7942 (2011).

    Article  ADS  Google Scholar 

  14. M. Pommier, C. A. McLinden, and M. Deeter, “Relative changes in CO emissions over megacities based on observations from space,” Geophys. Rev. Lett. 40, 1–6 (2013). https://doi.org/10.1002/grl.50704

    Article  Google Scholar 

  15. S. A. Sitnov, I. I. Mokhov, and A. V. Dzhola, “Total content of carbon monoxide in the atmosphere over Russian regions according to satellite data,” Izv., Atmos. Ocean. Phys. 53 (1), 32–48 (2017).

    Article  Google Scholar 

  16. V. S. Rakitin, Yu. A. Shtabkin, N. F. Elansky, N. V. Pankratova, A. I. Skorokhod, E. I. Grechko, and A. N. Safronov, “Comparison results of satellite and ground-based spectroscopic measurements of CO, CH4, and CO2 total contents,” Atmos. Ocean. Opt. 28 (6), 533–542 (2015).

    Article  Google Scholar 

  17. P. Wang, N. F. Elansky, Y. M. Timofeev, G. Wang, G. S. Golitsyn, M. V. Makarova, V. S. Rakitin, Y. Shtabkin, A. I. Skorokhod, E. I. Grechko, E. V. Fokeeva, A. N. Safronov, R. Liang, and W. Ting, “Long-term trends of carbon monoxide total columnar amount in urban areas and background regions: Ground- and satellite-based spectroscopic measurements,” Adv. Atmos. Sci. 35, 785–795 (2018). https://doi.org/10.1007/s00376-017-6327-8

    Article  Google Scholar 

  18. M. Krol, W. Peters, P. Hooghiemstra, M. George, C. Clerbaux, D. Hurtmans, D. McInerney, F. Sedano, P. Bergamaschi, M. El Hajj, W. Kaiser, D. Fisher, V. Yershov, and J.-P. Muller, “How much CO was emitted by the 2010 fires around Moscow?,” Atmos. Chem. Phys. 13, 4737–4747 (2013).https://doi.org/10.5194/acp-13-4737-2013

    Article  ADS  Google Scholar 

  19. L. Yurganov and V. Rakitin, “Two decades of satellite observations of carbon monoxide confirm the increase in Northern Hemispheric wildfires,” Atmosphere 13, 1479 (2022). https://doi.org/10.3390/atmos13091479

    Article  ADS  Google Scholar 

  20. F. Li, X. Zhang, S. Kondragunta, and X. Lu, “An evaluation of advanced baseline imager fire radiative power based wildfire emissions using carbon monoxide observed by the tropospheric monitoring instrument across the conterminous United States,” Environ. Res. Lett. 15, 094049 (2020). https://doi.org/10.1088/1748-9326/ab9d3a

    Article  ADS  Google Scholar 

  21. A. Lorente, K. F. Boersma, H. J. Eskes, J. P. Veefkind, J. H. G. M. van Geffen, M. B. de Zeeuw, H. A. C. Denier Van Der Gon, S. Beirle, and M. C. Krol, “Quantification of nitrogen oxides emissions from build-up of pollution over Paris with TROPOMI,” Sci. Rep. 9, 20033 (2019). https://doi.org/10.1038/s41598-019-56428-5

    Article  ADS  Google Scholar 

  22. X. Jin, Q. Zhu, and R. C. Cohen, “Direct estimates of biomass burning NOx emissions and lifetimes using daily observations from TROPOMI,” Atmos. Chem. Phys. 21, 15569–15587 (2021). https://doi.org/10.5194/acp-21-15569-2021

    Article  ADS  Google Scholar 

  23. I. Ialongo, N. Stepanova, J. Hakkarainen, H. Virta, and D. Gritsenko, “Satellite-based estimates of nitrogen oxide and methane emissions from gas flaring and oil production activities in Sakha Republic, Russia,” Atmos. Environ. X 11, 100114 (2021). https://doi.org/10.1016/j.aeaoa.2021.100114

    Article  Google Scholar 

  24. E. Crosman, “Meteorological drivers of Permian basin methane anomalies derived from TROPOMI,” Remote Sens. 13 (5), 896 (2021). https://doi.org/10.3390/rs13050896

    Article  ADS  Google Scholar 

  25. V. S. Rakitin, N. F. Elansky, A. I. Skorokhod, A. V. Dzhola, A. V. Rakitina, A. V. Shilkin, N. S. Kirillova, and A. V. Kazakov, “Long-term tendencies of carbon monoxide in the atmosphere of the Moscow megapolis,” Izv., Atmos. Ocean. Phys. 57 (1), 116–125 (2021).

    Article  Google Scholar 

  26. E. McKernan, L. N. Yurganov, B. T. Tolton, and R. Drummond, “MOPITT validation using ground-based IR spectroscopy,” Proc. SPIE—Int. Soc. Opt. Eng. 3756, 486–491 (1999).

  27. L. N. Yurganov, E. I. Grechko, and A. V. Dzhola, “Long-term measurements of carbon monoxide over Russia using a spectrometer of medium resolution,” Recent Res. Devel. Geophys, No. 4, 249–265 (2002).

    Google Scholar 

  28. N. F. Elansky, A. V. Shilkin, N. A. Ponomarev, P. V. Zakharova, M. D. Kachko, and T. I. Polyakov, “Spatiotemporal variations in the content of pollutants in the Moscow air basin and their emissions,” Izv., Atmos. Ocean. Phys. 58 (1), 80–94 (2022).https://doi.org/10.1134/S0001433822010029

    Article  Google Scholar 

  29. J. Landgraf, T. Borsdorff, B. Langerock, and A. Keppens, Product Readme Carbon Monoxide V. 01.04.00, N 1.5, Document No. S5P-MPC-SRON-PRF-CO. https://sentinel.esa.int/documents/247904/3541451/ Sentinel-5P-Carbon-Monoxide-Level-2-Product-Readme-File. Cited December 2, 2022.

  30. M. Knapp, R. Kleinschek, F. Hase, A. Agusti-Panareda, A. Inness, J. Barre, J. Landgraf, T. Borsdorff, S. Kinne, and A. Butz, “Shipborne measurements of XCO2, XCH4, and XCO above the Pacific Ocean and comparison to CAMS atmospheric analyses and S5P/TROPOMI,” Earth Syst. Sci. Data 13, 199–211 (2021). https://doi.org/10.5194/essd-13-199-2021

    Article  ADS  Google Scholar 

  31. Y. Yang, M. Zhou, B. Langerock, M. K. Sha, C. Hermans, T. Wang, D. Ji, C. Vigouroux, N. Kumps, G. Wang, M. De Maziere, and P. Wang, “New ground-based Fourier-transform near-infrared solar absorption measurements of XCO2, XCH4, and XCO at Xianghe, China,” Earth System Sci. Data 12 (3), 1679–1696 (2020). https://doi.org/10.5194/essd-12-1679-2020

    Article  ADS  Google Scholar 

  32. M. K. Sha, B. L. Langerock, J.-F. Blavier, T. Blumenstock, T. Borsdorff, M. Buschmann, A. Dehn, M. De Maziere, N. M. Deutscher, D. G. Feist, O. E. Garcia, D. W. T. Griffith, M. Grutter, J. W. Hannigan, F. Hase, P. Heikkinen, C. Hermans, L. T. Iraci, P. Jeseck, N. Jones, R. Kivi, N. Kumps, J. Landgraf, A. Lorente, E. Mahieu, M. V. Makarova, J. Mellqvist, J.-M. Metzger, I. Morino, T. Nagahama, J. Notholt, H. Ohyama, I. Ortega, M. Palm, C. Petri, D. F. Pollard, M. Rettinger, J. Robinson, S. Roche, C. M. Roehl, A. N. Rohling, C. Rousogenous, M. Schneider, K. Shiomi, D. Smale, W. Stremme, K. Strong, R. Sussmann, Y. Te, O. Uchino, V. A. Velazco, C. Vigouroux, M. Vrekoussis, P. Wang, T. Warneke, T. Wizenberg, D. Wunch, S. Yamanouchi, Y. Yang, and M. Zhou, “Validation of methane and carbon monoxide from Sentinel-5 precursor using TCCON and NDACC-IRWG stations,” Atmos. Meas. Tech. 14, 6249–6304. https://doi.org/10.5194/amt-14-6249-2021

  33. A. Apituley, M. Pedergnana, M. Sneep, J. P. Veefkind, D. Loyola, J. Landgraf, and T. Borsdorff, Sentinel-5 precursor/TROPOMI Level 2 Product User Manual Carbon Monoxide – S5P L2 PUM Carbon Monoxide. N 1.0.0. http://www.tropomi.eu/sites/default/files/files/ Sentinel-5P-Level-2-Product-User-Manual-Carbon-Monoxide_v1.0002_20180613.pdf. Cited June 13, 2018.

  34. A. I. Skorokhod, V. S. Rakitin, and N. S. Kirillova, “Impact of COVID-19 pandemic preventing measures and meteorological conditions on the atmospheric air composition in Moscow in 2020,” Russ. Meteorol. Hydrol. 47 (3), 183–190 (2022).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

TROPOMI CO data were provided by the European Space Agency. The ABL height calculations are based on the meteorological fields of the Global Data Assimilation System. The authors are grateful to an anonymous referee for useful remarks.

Funding

The research was carried out with the financial support of the Ministry of Science and Higher Education of the Russian Federation (agreement no. 075-15-2020-776).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Rakitin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rakitin, V.S., Kirillova, N.S., Fedorova, E.I. et al. Validation of TROPOMI Orbital Observations of the CO Total Column by Ground-Based Measurements at the OIAP Stations in Moscow and Zvenigorod. Atmos Ocean Opt 36, 501–511 (2023). https://doi.org/10.1134/S1024856023050135

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856023050135

Keywords:

Navigation