Skip to main content
Log in

Spatial and Temporal Variability of Forest Floor Moisture Characteristics and Their Influence on Wildfires in Western Siberia over 2016–2021

  • ATMOSPHERIC RADIATION, OPTICAL WEATHER, AND CLIMATE
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

The spatial and temporal variability of forest floor moisture characteristics is analyzed on the basis of the Canadian Forest Fire Weather Indices (CFFWIS) for the territory of Western Siberia (45°–75° N, 60°–90° E) over 2016–2021 for the first time. The floor moisture effect on the number of wildfires (hotspots) during the warm season (March–October) is assessed. The results are given for different natural zones. Statistically significant correlations are found between hotspots and floor moisture at a depth of 7 cm only in certain spring and summer months (correlation coefficient is up to 0.54). The strongest effect (correlation coefficient is up to 0.60) on wildfires is observed for floor moisture at a depth of 1.2 cm in the south of Western Siberia in April. Thus, we can conclude that the forest floor moisture is an important parameter in description of conditions for fire initiation and development. However, its effect on the behavior of wildfires requires additional studies with accounting for meteorological and atmospheric conditions. The results can be used for forecasting the potential fire danger.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. B. G. Sherstyukov and A. B. Sherstyukov, “Assessment of increase in forest fire risk in Russia till the late 21st century based on scenario experiments with fifth-generation climate models,” Russ. Meteorol. Hydrol. 39 (5), 292–301 (2014).

    Article  Google Scholar 

  2. M. Forkel, W. Dorigo, G. Lasslop, E. Chuvieco, S. Hantson, A. Heil, I. Teubner, K. Thonicke, and S. P. Harrison, “Recent global and regional trends in burned area and their compensating environmental controls,” Environ. Res. Commun. 1 (5), 051005 (2019). https://doi.org/10.1088/2515-7620/ab25d2

    Article  Google Scholar 

  3. N. Ya. Lomakina and A. V. Lavrinenko, “Modern trends of temperature of the atmospheric boundary layer over Siberia,” Atmos. Ocean. Opt. 35 (4), 378–386 (2022).

    Article  Google Scholar 

  4. E. V. Kharyutkina, S. V. Loginov, E. I. Moraru, K. N. Pustovalov, and Yu. V. Martynova, “Dynamics of extreme climatic characteristics and trends of dangerous meteorological phenomena over the territory of Western Siberia,” Atmos. Ocean. Opt. 35 (4), 394–401 (2022).

    Article  Google Scholar 

  5. S. P. Malevskii-Malevich, E. K. Mol’kentin, E. D. Nadezhina, A. A. Semioshina, I. A. Sall, E. I. Khlebnikova, and O. B. Shklyarevich, “Analysis of changes in fire-hazard conditions in the forests in Russia in the 20th and 21st centuries on the basis of climate modeling,” Russ. Meteorol. Hydrol. 32 (3), 154–161 (2007).

    Article  Google Scholar 

  6. I. I. Mokhov and A. V. Chernokulsky, “Regional model assessments of forest fire risks in the Asian part of Russia under climate change,” Geogr. Nat. Resour. 31 (2), 165–169 (2010).

    Article  Google Scholar 

  7. E. G. Shcheglova, “The effect of weather conditions fires of natural objects,” Vestn. Orenburg. Gos. Univ., No. 1, 166–170 (2013).

  8. G. I. Gorchakov, S. A. Sitnov, A. V. Karpov, I. A. Gorchakova, R. A. Gushchin, and O. I. Datsenko, “Eurasian large-scale hazes in summer 2016,” Izv., Atmos. Ocean. Phys. 55 (3), 261–270 (2019).

    Article  Google Scholar 

  9. Yu. A. Pkhalagov, V. N. Uzhegov, M. V. Panchenko, and I. I. Ippolitov, “Electro-optical interconnections in the atmosphere under smog conditions,” Atmos. Ocean. Opt. 19 (10), 774–777 (2006).

    Google Scholar 

  10. A. A. Kirsanov, Avtoref. Candidate’s Dissertation in Geography (Hydrometeorological Centre of Russia, Moscow, 2015).

  11. I. M. Shkol’nik, E. K. Mol’kentin, E. D. Nadezhina, E. I. Khlebnikova, and I. A. Sall, “Temperature extremes and wildfires in Siberia in the 21st century: The MGO regional climate model simulation,” Russ. Meteorol. Hydrol. 33 (3), 135–142 (2008).

    Article  Google Scholar 

  12. N. Badmaev and A. Bazarov, “Correlation analysis of terrestrial and satellite meteodata in the territory of the republic of buryatia (Eastern Siberia, Russian Federation) with forest fire statistics,” Agricult. Forest Meteor., No. 297, 108245 (2021).

  13. M. Forkel, K. Thonicke, C. Beer, W. Cramer, W. Bartalev, and C. Schmullius, “Extreme fire events are related to previous-year surface moisture conditions in permafrost-underlain larch forests of Siberia,” Environ. Res. Lett. 7, 044021 (2012).

    Article  ADS  Google Scholar 

  14. P. Y. Groisman, B. G. Sherstyukov, V. N. Razuvaev, R. W. Knight, J. G. Enloe, N. S. Stroumentova, P. H. Whitfield, E. J. Forland, I. Hanssen-Bauer, H. Tuomenvirta, H. Aleksandersson, A. V. Mescherskaya, and T. R. Karl, “Potential forest fire danger over northern Eurasia: Changes during the 20th century,” Glob. Planet. Change 56 (3–4), 371–386 (2007).

    Article  ADS  Google Scholar 

  15. B. M. Wotton, “Interpreting and using outputs from the canadian forest fire danger rating system in research applications,” Environ. Ecol. Stat. 16, 107–131 (2009).

    Article  MathSciNet  Google Scholar 

  16. A. V. Rubtsov, A. I. Sukhinin, and E. A. Vaganov, “System analysis of the fire weather danger in the forecast of large-scale fires in Siberian forests,” Issled. Zemli Kosmosa, No. 3, 62–70 (2010).

    Google Scholar 

  17. E. Kharyutkina, K. Pustovalov, E. Moraru, and O. Nechepurenko, “Analysis of spatio-temporal variability of lightning activity and wildfires in Western Siberia during 2016–2021,” Atmosphere 13 (669), 1–16 (2022).

    Article  Google Scholar 

  18. C. E. Van Wagner, Development and Structure of the Canadian Forest Fire Weather Index System (Canadian Forestry Service, Ottawa, ON, Canada, 1987).

    Google Scholar 

  19. I. M. Gubenko and K. G. Rubinshtein, “Comparative analysis of the fire danger index calculation techniques,” Trudy Gidromettsentra Rossii, Is. 347 (2012).

  20. G. M. Jenkins and D. G. Watts, Spectral Analysis and Its Applications (Holden-day, San Francisco; Cambridge; London; Amsterdam, 1969).

    MATH  Google Scholar 

  21. A. Bartsch, H. Balzter, and C. George, “The influence of regional surface soil moisture anomalies on forest fires in Siberia observed from satellites,” Environ. Res. Lett. 4 (4), 045021 (2009). https://doi.org/10.1088/1748-9326/4/4/045021

    Article  ADS  Google Scholar 

  22. A. B. Sherstyukov, “Soil temperature at depths of up to 320 cm under the climate change,” Trudy VNIIGMI-MTsD, Is. 173, 72–88 (2007).

    Google Scholar 

  23. E. V. Kharyutkina and S. V. Loginov, “Trends in changes of soil temperature at depth in Western Siberia based on reanalysis data,” Geogr. Prir. Resursy, No. 2, 95–102 (2019).

    Google Scholar 

  24. A. J. Dowdy and G. A. Mills, Atmospheric states associated with the ignition of lightning-attributed fires (Centre for Australian Weather and Climate Research, Melbourne, 2009, no. 19.

  25. T. E. Jupp, C. M. Taylor, H. Balzter, and C. T. George, “A statistical model linking Siberian forest fire scars with early summer rainfall anomalies,” Geophys. Rev. Lett. 33 (L14701) (2006).

  26. A. V. Eliseev, I. I. Mokhov, and A. V. Chernokulsky, “The influence of lightning activity and anthropogenic factors on large-scale characteristics of natural fires,” Izv., Atmos. Ocean. Phys. 53 (1), 3–12 (2017).

    Article  Google Scholar 

  27. J. Ruffault, T. Curt, N. K. Martin-StPaul, V. Moron, and R. M. Trigo, “Extreme wildfire events are linked to global-change-type droughts in the northern Mediterranean,” Nat. Hazards Earth Syst. Sci. 18, 847–856 (2018).

    Article  ADS  Google Scholar 

  28. D. Peterson, J. Wang, C. Ichoku, and L. A. Remer, “Effects of lightning and other meteorological factors on fire activity in the North American boreal forest: Implications for fire weather forecasting,” Atmos. Chem. Phys. 10, 6873–6888 (2010).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to S.V. Loginov and K.N. Pustovalov (IMCES SB RAS) for their help in processing the initial data.

Funding

This study was supported by the Russian Science Foundation (project no. 22-27-00494).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. V. Kharyutkina or E. I. Moraru.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kharyutkina, E.V., Moraru, E.I. Spatial and Temporal Variability of Forest Floor Moisture Characteristics and Their Influence on Wildfires in Western Siberia over 2016–2021. Atmos Ocean Opt 36, 169–175 (2023). https://doi.org/10.1134/S1024856023030077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856023030077

Keywords:

Navigation