Skip to main content
Log in

On Estimation of the Turbulent Mixing Layer Altitude from the Altitude-Time Distributions of the Richardson Number

  • REMOTE SENSING OF ATMOSPHERE, HYDROSPHERE, AND UNDERLYING SURFACE
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

Time series of the turbulent mixing layer altitude derived from the altitude-time distributions of the turbulence kinetic energy dissipation rate and of the gradient Richardson number are compared. We have found that the estimates of the turbulent mixing layer altitude from the altitude-time distributions of the Richardson number and of the turbulence kinetic energy dissipation rate are close only under the conditions of atmospheric boundary layer instability due to convection. In other cases, the mixing layer altitude derived from the Richardson number can be significantly underestimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. T. A. Bonin, B. J. Carroll, R. M. Hardesty, W. A. Brewer, K. Hajny, O. E. Salmon, and P. B. Shepson, “Doppler lidar observation of the mixing height in Indianapolis using an automated composite fuzzy logic approach,” J. Atmos. Ocean. Technol. 35 (3), 915–935 (2018).

    Article  Google Scholar 

  2. R. J. Hogan, A. L. M. Grant, A. J. Illingworth, G. N. Pearson, and E. J. O’Connor, “Vertical velocity variance and skewness in clear and cloud-topped boundary layers as revealed by Doppler lidar,” Q. J. R. Meteorol. Soc. 135 (4), 635–643 (2009).

    Article  ADS  Google Scholar 

  3. S. C. Tucker, W. A. Brewer, R. M. Banta, C. J. Senff, S. P. Sandberg, D. C. Law, A. M. Weickmann, and R. M. Hardesty, “Doppler lidar estimation of mixing height using turbulence, shear, and aerosol profiles,” J. Atmos. Ocean. Technol. 26 (4), 673–688 (2009).

    Article  ADS  Google Scholar 

  4. Y. L. Pichugina and R. M. Banta, “Stable boundary layer depth from high-resolution measurements of the mean wind profile,” J. Appl. Meteorol. Climatol. 49 (1), 20–35 (2010).

    Article  ADS  Google Scholar 

  5. J. F. Barlow, T. M. Dunbar, E. G. Nemitz, C. R. Wood, M. W. Gallagher, F. Davies, E. O’Connor, and R. M. Harrison, “Boundary layer dynamics over London, UK, as observed using Doppler lidar during REPARTEE-II,” Atmos. Chem. Phys. 11 (3), 2111–2125 (2011).

    Article  ADS  Google Scholar 

  6. J. H. Schween, A. Hirsikko, U. Lohnert, and S. Crewell, “Mixing-layer height retrieval with ceilometer and Doppler lidar: From case studies to long-term assessment,” Atmos. Meas. Tech. 7 (4), 3685–3704 (2014).

    Article  Google Scholar 

  7. V. Vakkari, E. J. O' Connor, A. Nisantzi, R. E. Mamouri, and D. G. Hadjimitsis, “Low-level mixing height detection in coastal locations with a scanning Doppler lidar,” Atmos. Meas. Tech. 8 (4), 1875–1885 (2015).

    Article  Google Scholar 

  8. M. Huang, Z. Gao, S. Miao, F. Chen, M. A. Lemone, J. Li, F. Hu, and L. Wang, “Estimate of boundary-layer depth over Beijing, China, using Doppler lidar data during SURF-2015,” Bound.-Lay. Meteorol. 162 (9), 503–522 (2017).

    Article  ADS  Google Scholar 

  9. V. A. Banakh, I. N. Smalikho, and A. V. Falits, “Determination of the height of the turbulent mixing air layer based on estimation of the parameters of wind turbulence from lidar data,” Opt. Atmos. Okeana 34 (3), 169–184 (2021). https://doi.org/10.15372/AOO20210303

    Article  Google Scholar 

  10. F. Gibert, N. Arnault, J. Cuesta, R. Plougonven, and P. H. Flamant, “Internal gravity waves convectively forced in the atmospheric residual layer during the morning transition,” Q. J. R. Meteorol. Soc. 137, 1610–1624 (2011).

    Article  ADS  Google Scholar 

  11. C. G. Helmis, G. Sgouros, M. Tombrou, K. Schafer, C. Munkel, E. Bossioli, and A. Dandou, “A comparative study and evaluation of mixing-height estimation based on sodar-RASS, ceilometer data and numerical model simulations,” Bound.-Lay. Meteorol. 145, 507–526 (2012). https://doi.org/10.1007/s10546-012-9743-4

    Article  ADS  Google Scholar 

  12. I. Petenko, S. Argentini, G. Casasanta, C. Genthon, and M. Kallistratova, “Stable surface-based turbulent layer during the polar winter at Dome C, Antarctica: Sodar and in situ observations,” Bound.-Lay. Meteorol. 171, 101–128 (2019). https://doi.org/10.1007/s10546-018-0419-6

    Article  ADS  Google Scholar 

  13. I. N. Smalikho and V. A. Banakh, “Measurements of wind turbulence parameters by a conically scanning coherent Doppler lidar in the atmospheric boundary layer,” Atmos. Meas. Tech. 10, 4191–4208 (2017).

    Article  Google Scholar 

  14. E. J. O’Connor, A. J. Illingworth, I. M. Brooks, C. D. Westbrook, R. J. Hogan, F. Davies, and B. J. Brooks, “A method for estimating the kinetic energy dissipation rate from a vertically pointing Doppler lidar, and independent evaluation from balloon-borne in situ measurements,” J. Atmos. Ocean. Technol. 27 (10), 1652–1664 (2010).

    Article  ADS  Google Scholar 

  15. V. A. Banakh, I. N. Smalikho, A. V. Falits, and A. M. Sherstobitov, “Estimating the parameters of wind turbulence from spectra of radial velocity measured by a pulsed Doppler lidar,” Remote Sens. 13, 2071 (2021). https://doi.org/10.3390/rs13112071

    Article  ADS  Google Scholar 

  16. H. Z. Baumert and H. Peters, “Turbulence closure: Turbulence, waves and the wave-turbulence transition—Part 1: Vanishing mean shear,” Ocean Sci. 5, 47–58 (2009).

    Article  ADS  Google Scholar 

  17. A. A. Grachev, E. L. Andreas, Ch. W. Fairall, P. S. Guest, P. Ola, and G. Persson, “The critical Richardson number and limits of applicability of local similarity theory in the stable boundary layer,” Bound.-Lay. Meteorol. 147, 51–82 (2013).

    Article  ADS  Google Scholar 

  18. V. A. Banakh, I. N. Smalikho, and A. V. Falits, “Wind-temperature regime and wind turbulence in a stable boundary layer of the atmosphere: Case study,” Remote Sens. 12 (955) (2020). https://doi.org/10.3390/rs12060955

  19. V. A. Banakh, I. N. Smalikho, and A. V. Falits, “Estimation of the height of the turbulent mixing layer from data of Doppler lidar measurements using conical scanning by a probe beam,” Atmos. Meas. Tech. 14, 1511–1524 (2021). https://doi.org/10.5194/amt-14-1511-2021

    Article  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation (project no. 19-17-00170-P) in part of creating a set of software programs for estimating parameters characterizing the temperature regime and turbulence in the atmospheric boundary layer and studying the altitude of the turbulent mixing layer according to data from wind lidars and a temperature profiler. The measurement technique was developed on the basis of the infrastructure of the Basic Experimental Complex of IAO SB RAS under the financial support of the Ministry of Science and Higher Education of the Russian Federation (V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Banakh.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banakh, V.A., Falits, A.V., Sherstobitov, A.M. et al. On Estimation of the Turbulent Mixing Layer Altitude from the Altitude-Time Distributions of the Richardson Number. Atmos Ocean Opt 36, 30–40 (2023). https://doi.org/10.1134/S1024856023020033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856023020033

Keywords:

Navigation