Skip to main content
Log in

Comparison of Results of Joint Wind Velocity Measurements with the Stream Line and WPL Coherent Doppler Lidars

  • REMOTE SENSING OF ATMOSPHERE, HYDROSPHERE, AND UNDERLYING SURFACE
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

The WPL pulsed coherent Doppler lidar (PCDL) designed at the Wave Propagation Laboratory of Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences, was tested in two experiments carried out in 2021 at the Basic Experimental Observatory of the Institute and on the coast of Lake Baikal. The experiments also involved a serial Stream Line PCDL (HALO Photonics, Great Britain). The comparative analysis of estimates of the average horizontal and vertical wind speeds from measurements with the Stream Line and WPL lidars showed a good agreement between the results (the correlation coefficient of the estimates is 0.98 with a 30-min averaging of the data).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

REFERENCES

  1. V. A. Banakh and I. N. Smalikho, Doppler Coherent Wind Lidars in Turbulent Atmosphere (Publishing House of IAO SB RAS, Tomsk, 2013) [in Russian].

    Google Scholar 

  2. T. Ando, M. Furuta, H. Tanaka, M. Nagashima, S. Kameyama, J. Suzuki, and Y. Hirano, “Development of low cost all-fiber Coherent Doppler Lidar (CDL) system,” in Proc. of the 13th Coherent Laser Radar Conference (Kamakura, Japan, 2005), pp. 170–173.

  3. S. Kameyama, T. Ando, K. Asaka, Y. Hirano, and S. Wadaka, “Compact all-fiber pulsed coherent doppler lidar system for wind sensing,” Appl. Opt. 6 (11), 1953–1962 (2007).

    Article  ADS  Google Scholar 

  4. T. Ando, S. Kameyama, and Y. Hirano, “All-fiber coherent doppler lidar technologies at mitsubishi electric corporation,” IOP Conf. Ser.: Earth Environ. Sci. 1, 012011 (2008). https://doi.org/10.1088/1755-1307/1/1/012011

  5. G. Pierson, F. Davies, and C. Collier, “An analysis of performance of the UFAM pulsed Doppler lidar for the observing the boundary layer,” J. Atmos. Ocean. Technol. 26 (2), 240–250 (2009).

    Article  ADS  Google Scholar 

  6. R. Parmentier, M. Boquet, J. P. Cariou, and L. Sauvage, “WindcubeTM pulsed lidar compact wind profiler: Overview on more than two years of comparison with calibrated sensors at different location,” in Proc. of the 15th Coherent Laser Radar Conference (Toulouse, France, 2009), pp. 267–270.

  7. A. Dolfi-Bouteyre, B. Augere, M. Valla, D. Goular, D. Fleury, G. Canat, C. Planchat, T. Gaudo, C. Besson, A. Gilliot, J. -P. Cariou, O. Petilon, J. Lawson-Daku, S. Brousmiche, S. Lugan, L. Bricteux, and B. Macq, “Aircraft wake vortex study and characterization with 1.5 μm fiber Doppler LIDAR,” J. Aerosp. Lab. No. 1, 1–14 (2009).

    Google Scholar 

  8. A. Dolfi-Bouteyre, G. Canat, M. Valla, B. Augere, C. Besson, D. Goular, L. Lombard, J. P. Cariou, A. Durecu, D. Fleury, et al., “Pulsed 1.5-μm lidar for axial aircraft wake vortex detection based on high-brightness large-core fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 15, 441–450 (2009).

    Article  ADS  Google Scholar 

  9. S. Kameyama, T. Sakimura, Y. Watanabe, T. Ando, K. Asaka, H. Tanaka, T. Yanagisawa, Y. Hirano, and H. Inokuchi, “Wind sensing demonstration of more than 30 km measurable range with a 1.5 μm coherent Doppler lidar which has the laser amplifier using Er,Yb:Glass planar waveguide,” Proc. SPIE—Int. Soc. Opt. Eng. 8526, 85260 (2012). https://doi.org/10.1117/12.977330

  10. X. Jia, D. Sun, S. Xie, and X. Wu, “Development of 1.55 μm coherent lidar for wind and wake vortex sensing,” in Proc. of the 18th Coherent Laser Radar Conference (Boulder, USA, 2016), p. P12.

  11. J. P. Cariou, L. Thobois, Q. Germon, A. Dolfi-Bouteyre, and A. Durecu, “Development of a high power doppler wind lidar for measuring wind and EDR along aircraft approaches,” in Proc. of the 18th Coherent Laser Radar Conference (Boulder, USA, 2016), p. M7.

  12. Liu Jiqiao, Chen Weibiao, Zhu Xiaolei, Zhu Xiaopeng, Zhang Xin, Liu Yuan, and Shi Wei, “Development of 1.5 μm all-fiber pulsed coherent Doppler wind lidar,” in Proc. of the 18th Coherent Laser Radar Conference (Boulder, USA, 2016), p. M16.

  13. M. Boquet, P. Royer, V. Pureur, J. P. Cariou, and M. Smith, “Long range off-shore wind assessment by high power scanning lidars,” in Proc. of the 18th Coherent Laser Radar Conference (Boulder, USA, 2016), p. T2.

  14. S. Wu, B. Liu, J. Liu, iX. Zha, C. Feng, G. Wang, H. Zhang, J. Yin, X. Wang, R. Li, and D. Gallacher, “Wind turbine wake visualization and characteristics analysis by Doppler lidar,” Opt. Express 24 (10) (2016). https://doi.org/10.1364/OE.24.00A762

  15. N. Vasiljevic, G. Lea, M. Courtney, J. P. Cariou, J. Mann, and T. Mikkelsen, “Long-range wind scanner system,” Remote Sens. 8, 896 (2016). https://doi.org/10.3390/rs8110896

    Article  ADS  Google Scholar 

  16. I. N. Smalikho and V. A. Banakh, “Measurements of wind turbulence parameters by a conically scanning coherent Doppler lidar in the atmospheric boundary layer,” Atmos. Meas. Tech. 10 (11), 4191–4208 (2017).

    Article  Google Scholar 

  17. V. A. Banakh, I. N. Smalikho, A. V. Falits, and A. M. Sherstobitov, “Estimating the parameters of wind turbulence from spectra of radial velocity measured by a pulsed Doppler lidar,” Remote Sens. 13, 2071 (2021). https://doi.org/10.3390/rs13112071

    Article  ADS  Google Scholar 

  18. V. A. Banakh, A. I. Nadeev, I. A. Razenkov, I. N. Smalikho, A. V. Falits, and A. M. Sherstobitov, “Test results of a pulsed coherent Doppler lidar created at the Institute of Atmospheric Optics SB RAS,” Proc. SPIE—Int. Soc. Opt. Eng. 11208, 112085K-1-112085K-9 (2019). https://doi.org/10.1117/12.2540944

  19. I. N. Smalikho, V. A. Banakh, F. Holzapfel, and S. Rahm, “Estimation of aircraft wake vortex parameters from array of radial velocities measured by a coherent Doppler lidar, " Opt. Atmos. Okeana 28 (8), 742–750 (2015).

    Google Scholar 

  20. A. Stephan, N. Wildmann, and I. N. Smalikho, “Effectiveness of the MFAS method for determining the wind velocity vector from Windcube 200s lidar measurements,” Atmos. Ocean. Opt. 32 (5), 555–563 (2019).

    Article  Google Scholar 

  21. V. A. Banakh and I. N. Smalikho, “Lidar observations of atmospheric internal waves in the boundary layer of atmosphere on the coast of Lake Baikal,” Atmos. Meas. Tech. 9 (10), 5239–5248 (2016). https://doi.org/10.5194/amt-9-5239-2016

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 19-17-00170-P) in regard to creation of the software system for estimating the wind velocity from lidar data and statistical analysis of results of comparative measurements with two lidars, as well as by the Ministry of Science and Higher Education of the Russian Federation (V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences) in regard to creation of the WPL lidar and using the infrastructure of the Basic Experimental Observatory of IAO SB RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. N. Smalikho.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Nikol’skii

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smalikho, I.N., Banakh, V.A., Razenkov, I.A. et al. Comparison of Results of Joint Wind Velocity Measurements with the Stream Line and WPL Coherent Doppler Lidars. Atmos Ocean Opt 35 (Suppl 1), S79–S91 (2022). https://doi.org/10.1134/S1024856023010177

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856023010177

Keywords:

Navigation