Skip to main content
Log in

Choice of Optical Properties of Soot Particles for Description of Solar Radiation Absorption in the Atmosphere and on the Earth’s Surface

  • OPTICS OF CLUSTERS, AEROSOLS, AND HYDROSOLES
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

New data on the dependence of the function of the refractive index of soot particles on their average size in the visible and near-IR spectral regions are presented. The data are obtained by laser-induced incandescence. The sunlight absorption by soot aerosols is currently calculated with a value of the refractive index function of about 0.2 at a wavelength of 550 nm regardless of the origin of soot particles and their variability. The data demonstrate that optical properties of soot depend on the size of particles and conditions of their formation, which, in turn, is related to the degree of their graphitization. It is shown that taking into account the particle size distribution in soot aerosols can lead to an increase in solar radiation absorption by them approximately by two times as compared to the commonly accepted values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. T. C. Bond, S. J. Doherty, D. W. Fahey, P. M. Forster, T. Berntsen, B. J. DeAngelo, M. G. Flanner, S. Ghan, B. Karcher, D. Koch, S. Kinne, Y. Kondo, P. K. Quinn, M. C. Sarofim, M. G. Schultz, M. Schulz, C. Venkataraman, H. Zhang, S. Zhang, N. Bellouin, S. K. Guttikunda, P. K. Hopke, M. Z. Jacobson, J. W. Kaiser, Z. Klimont, U. Lohmann, J. P. Schwarz, D. Shindell, T. Storelvmo, S. G. Warren, and C. S. Zender, “Bounding the role of black carbon in the climate system: A scientific assessment,” J. Geophys. Res.: Atmos. 118, 5380–5552 (2013).

    Article  ADS  Google Scholar 

  2. P. Chylek, V. Ramaswamy, and V. Srivastava, “Albedo of soot-contaminated snow,” J. Geophys. Res. 88 (C15), 10837–10843 (1983).

    Article  ADS  Google Scholar 

  3. A. S. Ginzburg, D. P. Gubanova, and V. M. Minashkin, “Influence of natural and anthropogenic aerosols on global and regional climate,” Russ. J. Gen. Chem. 79, 2062–2070 (2009).

    Article  Google Scholar 

  4. C. Schulz, B. F. Kock, M. Hofmann, H. A. Michelsen, S. Will, B. Bougie, R. Suntz, and G. Smallwood, “Laser-induced incandescence: Recent trends and current questions,” Appl. Phys. B 83, 333–354 (2006).

    Article  ADS  Google Scholar 

  5. E. V. Gurentsov, A. V. Eremin, and E. Yu. Mikheeva, “Study of thermodynamic properties of carbon nanoparticles by the laser heating method,” High Temperature 55 (5), 723–730 (2017).

    Article  Google Scholar 

  6. E. Gurentsov, “A review on determining the refractive index function, thermal accommodation coefficient and evaporation temperature of light absorbing nanoparticles suspended in gas the phase using the laser-induced incandescence,” Nanotechnol. Rev. 7, 583–604 (2018).

    Article  Google Scholar 

  7. D. R. Snelling, F. Liu, and G. J. Smallwood, “Determination of the soot absorption function and thermal accommodation coefficient using low-fluence LII in a laminar coflow ethylene diffusion flame,” Combust. Flame 136, 180–190 (2004).

    Article  Google Scholar 

  8. D. Snelling, K. Thomson, F. Liu, and G. Smallwood, “Comparison of LII derived soot temperature measurements with LII model predictions for soot in a laminar diffusion flame,” Appl. Phys. B 96, 657–669 (2009).

    Article  ADS  Google Scholar 

  9. H. Bladh, J. Johnsson, N.-E. Olofsson, A. Bohlin, and P.-E. Bengtsson, “Optical soot characterization using two-color laser-induced incandescence (2C-LII) in the soot growth region of a premixed flat flame,” Proc. Combust. Inst. 33, 641–648 (2011).

    Article  Google Scholar 

  10. N.-E. Olofsson, J. Simonsson, S. Torok, H. Bladh, and P.-E. Bengtsson, “Evolution of properties for aging soot in premixed flat flames studied by laser-induced incandescence and elastic light scattering,” Appl. Phys. B 119, 669–683 (2015).

    Article  ADS  Google Scholar 

  11. S. Bejaoui, S. Batut, F. Therssen, N. Lamoureux, P. Desgroux, and F. Liu, “Measurements and modeling of laser-induced incandescence of soot at different heights in a flat premixed flame,” Appl. Phys. B 118, 449–469 (2015).

    Article  ADS  Google Scholar 

  12. A. V. Eremin, E. V. Gurentsov, E. Popova, and K. Priemchenko, “Size dependence of complex refractive index function of growing nanoparticles,” Appl. Phys. B 104, 285–295 (2011).

    Article  ADS  Google Scholar 

  13. E. Therssen, Y. Bouvier, C. Schoemaecker-Moreau, X. Mercier, P. Desgroux, M. Ziskind, and C. Focsa, “Determination of the ratio of soot refractive index function E(m) at the two wavelengths 532 and 1064 nm by laser induced incandescence,” Appl. Phys. B 89, 417–427 (2007).

    Article  ADS  Google Scholar 

  14. H. A. Michelsen, P. E. Schrader, and F. Goulay, “Wavelength and temperature dependences of the absorption and scattering cross sections of soot,” Carbon 48, 2175–2191 (2010).

    Article  Google Scholar 

  15. X. Lopez-Yglesias, P. E. Schrader, and H. A. Michelsen, “Soot maturity and absorption cross sections,” J. Aerosol Sci. 75, 43–64 (2014).

    Article  ADS  Google Scholar 

  16. J. Yon, R. Lemaire, E. Therssen, P. Desgroux, A. Coppalle, and K. F. Ren, “Examination of wavelength dependent soot optical properties of diesel and diesel/rapeseed methyl ester mixture by extinction spectra analysis and LII measurements,” Appl. Phys. B 104, 253–271 (2011).

    Article  ADS  Google Scholar 

  17. G. Cleon, T. Amodeo, A. Faccinetto, and P. Desgroux, “Laser induced incandescence determination of the ratio of the soot absorption functions at 532 nm and 1064 nm in the nucleation zone of a low pressure premixed sooting flame,” Appl. Phys. B 104, 297–305 (2011).

    Article  ADS  Google Scholar 

  18. S. Bejaoui, R. Lemaire, P. Desgroux, and F. Therssen, “Experimental study of the E(m, k)/E(m, 1064) ratio as a function of wavelength, fuel type, height above the burner and temperature,” Appl. Phys. B 116, 313–323 (2013).

    Article  ADS  Google Scholar 

  19. M. V. Panchenko, V. S. Kozlov, V. V. Pol’kin, S. A. Terpugova, A. G. Tumakov, and V. P. Shmargunov, “Retrieval of optical characteristics of the tropospheric aerosol in West Siberia on the basis of generalized empirical model taking into account absorption and hygroscopic properties of particles,” Opt. Atmos. Okeana 25 (1), 46–54 (2012).

    Google Scholar 

  20. V. E. Zuev and G. M. Krekov, Optical Models of the Atmosphere (Gidrometeoizdat, Leningrad, 1986) [in Russian].

    Google Scholar 

  21. J. T. Twitty and J. A. Weinmann, “Radiative properties of carbonaceous aerosol,” J. Appl. Meteorol. 10, 725–731 (1971).

    Article  ADS  Google Scholar 

  22. T. C. Bond and R. W. Bergstrom, “Light absorption by carbonaceous particles: An investigative review,” Aerosol Sci. Technol. 40, 27–67 (2006).

    Article  ADS  Google Scholar 

  23. E. Gurentsov, A. Eremin, E. Mikheeva, and R. Kolotushkin, “The impact of size and structure on the optical properties of soot particles synthesized during pyrolysis and burning of hydrocarbons,” Teplofiz. Vysokikh Temperatur 60 (3), 374–384 (2022). https://doi.org/10.31857/S0040364422020053

    Article  Google Scholar 

  24. C. Russo, B. Apicella, A. Tregrossi, A. Ciajolo, K. C. Le, S. Török, and P.-E. Bengtsson, “Optical band gap analysis of soot and organic carbon in premixed ethylene flames: comparison of in-situ and ex-situ absorption measurements,” Carbon 158, 89–96 (2020).

    Article  Google Scholar 

  25. M. Schulz, C. Textor, S. Kinne, Y. Balkanski, S. Bauer, T. Berntsen, T. Berglen, O. Boucher, F. Dentener, S. Guibert, I. S. A. Isaksen, T. Iversen, D. Koch, A. Kirkevag, X. Liu, V. Montanaro, G. Myhre, J. E. Penner, G. Pitari, S. Reddy, O. Seland, P. Stier, and T. Takemura, “Radiative forcing by aerosols as derived from the AeroCom present-day and pre-industrial simulations,” Atmos. Chem. Phys. 6, 5225–5246 (2006).

    Article  ADS  Google Scholar 

  26. P. Chleck and J. A. Coakley, Jr., “Aerosols and climate,” Science 183, 5–77 (1974).

    Google Scholar 

  27. J. A. Ogren and R. J. Charlson, “Elemental carbon in the atmosphere: Cycle and lifetime,” Tellus 35, 241–254 (1983).

    Article  Google Scholar 

  28. T. C. Bond, E. Bhardwaj, R. Dong, R. Jogani, S. Jung, C. Roden, D. G. Streets, and N. M. Trautmann, “Historical emissions of black and organic carbon aerosol from energy-related combustion, 1850–2000,” Global Biogeochem. Cycles 21, GB2018 (2007).

    Article  ADS  Google Scholar 

  29. F. Liu, J. Yon, A. Fuentes, P. Lobo, G. J. Smallwood, and J. C. Corbinet, “Review of recent literature on the light absorption properties of black carbon: Refractive index, mass absorption cross section, and absorption function,” Aerosol Sci. Technol. 54, 33–51 (2020).

    Article  ADS  Google Scholar 

  30. D. S. Su, J.-O. Muller, R. E. Jentoft, D. Rothe, E. Jacob, and R. Schogl, “Fullerene-like soot from EuroIV diesel engine: Consequences for catalytic automotive pollution control,” Top. Catal 30, 241–245 (2004).

    Article  Google Scholar 

  31. S. Lu, Z. Tan, P. Liu, H. Zhao, D. Liu, Sh. Yu, P. Cheng, M. S. Win, J. Hu, L. Tian, M. Wu, Sh. Yonemochi, and Q. Wang, “Single particle aerosol mass spectrometry of coal combustion particles associated with high lung cancer rates in Xuanwei and Fuyuan, China,” Chemosphere 186, 278–286 (2017).

    Article  ADS  Google Scholar 

  32. T. Torvela, J. Tissari, O. Sippula, T. Kaivosoja, J. Leskinen, A. Viren, A. Lahde, and J. Jokiniemi, “Effect of wood combustion conditions on the morphology of freshly emitted fine particles,” Atmos. Environ. 87, 65–76 (2014).

    Article  ADS  Google Scholar 

  33. Y. Luo, L. Zhu, J. Fang, Z. Zhuang, C. Guan, C. Xia, X. Xie, and Z. Huang, “Size distribution, chemical composition and oxidation reactivity of particulate matter from gasoline direct injection (GDI) engine fueled with ethanol-gasoline fuel,” Appl. Therm. Eng. 89, 647–655 (2015).

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 21-19-00390).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. V. Gurentsov, A. V. Eremin or R. N. Kolotushkin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Nikol’skii

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gurentsov, E.V., Eremin, A.V. & Kolotushkin, R.N. Choice of Optical Properties of Soot Particles for Description of Solar Radiation Absorption in the Atmosphere and on the Earth’s Surface. Atmos Ocean Opt 35, 645–650 (2022). https://doi.org/10.1134/S102485602206015X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102485602206015X

Keywords:

Navigation