Skip to main content
Log in

Numerical Displacement of Target Wavefront Formation Plane with DMD-Based Modulation and Geometric Phase Holographic Registration System

  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

Technologies of independent amplitude-phase modulation of the wavefront at the output plane of optical systems with spatial filtering are effective in solving a wide range of problems. In this work, we present the results of our experimental study of a numerical displacement of the target wavefront formation plane. We numerically and experimentally show the 1-cm displacement of target wavefront formation plane when using independent amplitude-phase modulation with a digital micromirror device. The wavefronts generated are reconstructed from intensity distributions recorded with a common-path holographic detection system, which is based on geometric phase lens and polarization camera. An increase in quantization levels is shown to be accompanied by a slight deterioration in the spatial resolution of the phase distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. G. Zhou, Z. H. Lim, Y. Qi, and G. Zhou, “Single-pixel MEMS imaging systems,” Micromachines 11, 219 (2020). https://doi.org/10.3390/mi11020219

    Article  Google Scholar 

  2. E. Anzuola and A. Belmonte, “Generation of atmospheric wavefronts using binary micromirror arrays,” Appl. Opt. 55, 3039 (2016).

    Article  ADS  Google Scholar 

  3. T. Xu, Y. Li, W. Du, C. Ma, S. Cai, M. Lan, J. Wu, S. Yu, and J. Lin, “Simulating atmospheric turbulence using a spatial light modulator based on Fourier transform,” in Proc. of the CLEO: Science and Innovations (2014), p. SM4J–3.

  4. J. D. Phillips, M. E. Goda, and J. Schmidt, “Atmospheric turbulence simulation using liquid crystal spatial light modulators,” in Proc. of the Advanced Wavefront Control: Methods, Devices, and Applications III (2005), vol. 5894, p. 589406.

  5. L. Gao, J. Liang, C. Li, and L. Wang, “Single-shot compressed ultrafast photography at one hundred billion frames per second,” Nature 516, 74 (2014).

    Article  ADS  Google Scholar 

  6. M. Booth, D. Andrade, D. Burke, B. Patton, and M. Zurauskas, “Aberrations and adaptive optics in super-resolution microscopy,” Microscopy 64, 251–261 (2015).

    Article  Google Scholar 

  7. R. Horstmeyer, H. Ruan, and C. Yang, “Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue,” Nat. Photonics (2015).

  8. F. Zamkotsian, P. Lanzoni, E. Grassi, R. Barette, C. Fabron, K. Tangen, L. Valenziano, L. Marchand, and L. Duvet, “Successful evaluation for space applications of the 2048×1080 DMD,” in Proc. of the Emerging Digital Micromirror Device Based Systems and Applications III (2011), vol. 7932, p. 79320.

  9. F. Zamkotsian, P. Lanzoni, E. Grassi, R. Barette, C. Fabron, K. Tangen, L. Valenziano, L. Marchand, and L. Duvet, “Space evaluation of 2048×1080 mirrors DMD chip for ESA’S EUCLID mission,” in Proc. of the Space Telescopes and Instrumentation: Optical, Infrared, and Millimeter Wave (2010), vol. 7731, p. 773130.

    Google Scholar 

  10. P. Spano, F. Zamkotsian, R. Content, R. Grange, M. Robberto, L. Valenziano, F. M. Zerbi, R. M. Sharples, F. Bortoletto, V. De Caprio, et al., “DMD multi-object spectroscopy in space: the EUCLID study,” in Proc. of the UV/Optical/IR Space Telescopes: Innovative Technologies and Concepts IV (2009), vol. 7436, p. 743600.

  11. M. Chlipala and T. Kozacki, “Color LED DMD holographic display with high resolution across large depth,” Opt. Lett. 44, 4255–4258 (2019).

    Article  ADS  Google Scholar 

  12. J.-Y. Son, B.-R. Lee, O. O. Chernyshov, K.-A. Moon, and H. Lee, “Holographic display based on a spatial DMD array,” Opt. Lett. 38, 3173–3176 (2013).

    Article  ADS  Google Scholar 

  13. B. Lee, D. Yoo, J. Jeong, S. Lee, D. Lee, and B. Lee, “Wide-angle speckleless DMD holographic display using structured illumination with temporal multiplexing,” Opt. Lett. 45, 2148–2151 (2020).

    Article  ADS  Google Scholar 

  14. S. K. Kalyoncu, Y. Huang, Q. Song, and O. Boyraz, “Fast arbitrary waveform generation by using digital micromirror arrays fast arbitrary waveform generation by using digital micromirror arrays,” IEEE Photonics J. 5, 5500207 (2013).

    Article  ADS  Google Scholar 

  15. S. Turtaev, I. T. Leite, K. J. Mitchell, M. J. Padgett, D. B. Phillips, and T. Cizmar, “Comparison of nematic liquid-crystal and DMD based spatial light modulation in complex photonics,” Opt. Express 25, 29874 (2017).

    Article  ADS  Google Scholar 

  16. P. A. Cheremkhin and E. A. Kurbatova, “Comparative appraisal of global and local thresholding methods for binarisation of off-axis digital holograms,” Opt. Lasers Eng. 115, 119–130 (2019).

    Article  Google Scholar 

  17. G. Yang, S. Jiao, J.-P. Liu, T. Lei, and X. Yuan, “Error diffusion method with optimized weighting coefficients for binary hologram generation,” Appl. Opt. 58, 5547–5555 (2019).

    Article  ADS  Google Scholar 

  18. W. H. Lee, “Binary synthetic holograms,” Appl. Opt. 13, 1677–1682 (1974).

    Article  ADS  Google Scholar 

  19. C. Gu, D. Zhang, Y. Chang, and S.-C. Chen, “Digital micromirror device-based ultrafast pulse shaping for femtosecond laser,” Opt. Lett. 40, 2870–2873 (2015).

    Article  ADS  Google Scholar 

  20. A. Dudley, G. Milione, R. R. Alfano, and A. Forbes, “All-digital wavefront sensing for structured light beams,” Opt. Express 22, 14031–14040 (2014).

    Article  ADS  Google Scholar 

  21. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997).

    Article  ADS  Google Scholar 

  22. Y. Awatsuji, M. Sasada, and T. Kubota, “Parallel quasi-phase-shifting digital holography,” Appl. Phys. Lett. 85, 1069 (2004).

    Article  ADS  Google Scholar 

  23. J. Kim, Y. Li, M. N. Miskiewicz, C. Oh, M. W. Kudenov, and M. J. Escuti, “Fabrication of ideal geometric-phase holograms with arbitrary wavefronts,” Optica 2, 958–964 (2015).

    Article  ADS  Google Scholar 

  24. K. Choi, K.-I. Joo, T.-H. Lee, H.-R. Kim, J. Yim, H. Do, and S.-W. Min, “Compact self-interference incoherent digital holographic camera system with real-time operation,” Opt. Express 27, 4818–4833 (2019).

    Article  ADS  Google Scholar 

  25. J. Dyson, “Very stable common-path interferometers and applications,” J. Opt. Soc. Am. 53, 690–694 (1963).

    Article  ADS  Google Scholar 

  26. A. O. Georgieva, A. V. Belashov, and N. V. Petrov, “Complex wavefront manipulation and holographic correction based on digital,” in Proc. of the Emerging Digital Micromirror Device Based Systems and Applications XII (2020), vol. 11294, p. 112940.

  27. K. Choi, J. Yim, and S.-W. Min, “Achromatic phase shifting self-interference incoherent digital holography using linear polarizer and geometric phase lens,” Opt. Express 26, 16212–16225 (2018).

    Article  ADS  Google Scholar 

  28. L. A. DeMars, M. Mikula-Zdańkowska, K. Falaggis, and R. Porras-Aguilar, “Single-shot phase calibration of a spatial light modulator using geometric phase interferometry,” Appl. Opt. 59, D125–D130 (2020).

    Article  Google Scholar 

  29. A. Georgieva, A. Belashov, and N. Petrov, “Optimization of DMD-based independent amplitude and phase modulation by analysis of target complex wavefront,” Sci. Rep. (in press) https://doi.org/10.1038/s41598-022-11443-x

  30. D. B. Conkey, A. M. Caravaca-Aguirre, and R. Piestun, “High-speed scattering medium characterization with application to focusing light through turbid media,” Opt. Express, 20, 1733 (2012).

    Article  ADS  Google Scholar 

  31. S. A. Goorden, J. Bertolotti, and A. P. Mosk, “Superpixel-based spatial amplitude and phase modulation using a digital micromirror device,” Opt. Express 22, 17999–18009 (2014).

    Article  ADS  Google Scholar 

  32. D. Abdollahpour, D. G. Papazoglou, and S. Tzortzakis, “Four-dimensional visualization of single and multiple laser filaments using in-line holographic microscopy,” Phys. Rev. A 84, 53809 (2011).

    Article  ADS  Google Scholar 

  33. A. V. Chernykh, A. S. Ezerskii, A. O. Georgieva, and N. V. Petrov, “Study on object wavefront sensing in parallel phase-shifting camera with geometric phase lens,” Proc. SPIE–Int. Soc. Opt. Eng. 11898, 113–120 (2021).

  34. A. F. Doval and C. Trillo, “Dimensionless formulation of the convolution and angular spectrum reconstruction methods in digital holography,” Proc. SPIE 7387, 73870 (2010).

    Article  ADS  Google Scholar 

  35. Y.-X. Ren, R.-D. Lu, and L. Gong, “Tailoring light with a digital micromirror device,” Ann. Phys. (New York) 527, 447–470 (2015).

    ADS  MathSciNet  Google Scholar 

Download references

Funding

This work was supported by President of Russian Federation (grant no. MD-6101.2021.1.2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Georgieva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Georgieva, A., Ezerskii, A., Chernykh, A. et al. Numerical Displacement of Target Wavefront Formation Plane with DMD-Based Modulation and Geometric Phase Holographic Registration System. Atmos Ocean Opt 35, 258–265 (2022). https://doi.org/10.1134/S1024856022030034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856022030034

Keywords:

Navigation