Skip to main content
Log in

Multiple Scattering in Cirrus Clouds and Taking It into Account When Interpreting Lidar Measurements in the Stratosphere

  • REMOTE SENSING OF ATMOSPHERE, HYDROSPHERE, AND UNDERLYING SURFACE
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

Multiple scattering arising in cirrus clouds in the process of lidar sensing of the atmosphere is studied using the Monte Carlo method. The calculations are performed for model scattering phase functions corresponding to crystalline cirrus cloud particles with sizes from 20 to 100 µm. A critical analysis of some common methods for multiple scattering correction in cirrus clouds is carried out. Numerical experiments on sensing cirrus clouds and stratospheric aerosol from the Earth’s surface with signal calibration at an altitude of 30 km are conducted. It is shown that ignoring the multiple scattering in this measurement scheme leads to a considerable distortion of the altitude profile of the backscattering coefficient in cirrus clouds and above them; at the same time, errors in the determination of the optical thickness of the clouds remain insignificant. An iteration scheme for taking into account multiple scattering is proposed and tested in numerical experiments. The simulation results are compared with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Yu. Hong, G. Liu, and J.-L. F. Li, “Assessing the radiative effects of global ice clouds based on CloudSat and CALIPSO measurements,” J. Clim. 29, 7651–7674 (2016).

    Article  ADS  Google Scholar 

  2. A. J. Baran, “A review of the light scattering properties of cirrus,” J. Quant. Spectrosc. Radiat. Transfer 110, 1239–1260 (2009).

    Article  ADS  Google Scholar 

  3. C. M. R. Platt, “Lidar and radiometric observations of cirrus clouds,” J. Atmos. Sci. 30, 1191–1204 (1973).

    Article  ADS  Google Scholar 

  4. R. J. Hogan, “Fast approximate calculation of multiply scattered lidar returns,” Appl. Opt. 45 (23), 5984–5992 (2006).

    Article  ADS  Google Scholar 

  5. C. Hoareau, P. Keckhut, V. Noel, H. Chepfer, and J.‑L. Baray, “A decadal cirrus clouds climatology from ground-based and spaceborne lidars above the south of France (43.9° N–5.7° E),” Atmos. Chem. Phys. 13, 6951–6963 (2013).

    Article  ADS  Google Scholar 

  6. T. J. Thorsen and Q. Fu, “Automated Retrieval of cloud and aerosol properties from the ARM Raman lidar. Part II: Extinction,” J. Atmos. Ocean. Technol. 32, 2000–2023 (2015).

    Google Scholar 

  7. A. Garnier, J. Pelon, M. A. Vaughan, D. M. Winker, C. R. Trepte, and P. Dubuisson, “Lidar multiple scattering factors inferred from CALIPSO lidar and IIR retrievals of semi-transparent cirrus cloud optical depths over oceans,” Atmos. Meas. Tech. 8, 2759–2774 (2015).

    Article  Google Scholar 

  8. K. Sassen and J. M. Comstock, “a midlatitude cirrus cloud climatology from the facility for atmospheric remote sensing. Part III: Radiative properties,” J. Atmos. Sci. 58, 2123–2137 (2001).

    ADS  Google Scholar 

  9. P. Seifert, A. Ansmann, D. Muller, U. Wandinger, D. Althausen, A. J. Heymsfield, S. T. Massie, and C. Schmitt, “Cirrus optical properties observed with lidar, radiosonde, and satellite over the tropical Indian Ocean during the aerosol-polluted northeast and clean maritime southwest monsoon,” J. Geophys. Res. 112, D17205 (2007).

    Article  ADS  Google Scholar 

  10. Monte Carlo Method in Atmospheric Optics, Ed. by G. I. Marchuk (Nauka, Novosibirsk, 1976) [in Russian.

  11. http://stc-se.com/data/bbaum/Ice_Models/UV-FarIR_ SpectralModels.html. Cited March 17, 2021.

  12. B. A. Baum, P. Yang, A. J. Heymsfield, A. Bansemer, H. Benjamin, B. H. Cole, A. Merrelli, C. Schmitt, and C. Wang, “Ice cloud single-scattering property models with the full phase matrix at wavelengths from 0.2 to 100 mm,” J. Quant. Spectrosc. Radiat. Transfer 146, 123–139 (2014).

    Article  ADS  Google Scholar 

  13. A. V. Konoshonkin, A. G. Borovoi, N. V. Kustova, V. A. Shishko, and D. N. Timofeev, Light Scattering by Atmospheric Ice Crystals in the Physical Optics Approximation (Publishing House of SB RAS, Novosibirsk, 2020) [in Russian].

    Google Scholar 

  14. A. Borovoi, A. Konoshonkin, and N. Kustova, “Backscattering by Hexagonal Ice Crystals of Cirrus Clouds,” Opt. Lett. 38 (15), 2881–1884 (2013).

  15. V. A. Shishko, A. V. Konoshonkin, N. V. Kustova, D. N. Timofeev, and A. G. Borovoi, “Coherent and incoherent backscattering by a single large particle of irregular shape,” Opt. Express 27 (23), 32984–32993 (2019).

    Article  ADS  Google Scholar 

  16. P. Yang, “Backscattering peak of ice cloud particles,” Opt. Express 23 (9), 11995–12003 (2015).

    Article  ADS  Google Scholar 

  17. D. Winker, “Accounting for multiple scattering in retrievals from space lidar,” Proc. SPIE—Int. Soc. Opt. Eng. 5059, 128–139 (2003).

  18. F. G. Fernald, “Analysis of atmospheric lidar observations: Some comments,” Appl. Opt. 23 (5), 652–653 (1984).

    Article  ADS  Google Scholar 

  19. C. M. R. Platt, S. A. Young, R. T. Austin, G. R. Patterson, D. L. Mitchell, and S. D. Miller, “LIRAD observations of tropical cirrus clouds in MCTEX. Part I: Optical properties and detection of small particles in cold cirrus,” J. Atmos. Sci. 59 (22), 3145–3162 (2002).

    Article  ADS  Google Scholar 

  20. D. A. Gouveia, B. Barja, H. M. J. Barbosa, P. Seifert, H. Baars, T. Pauliquevis, and P. Artaxo, “Optical and geometrical properties of cirrus clouds in Amazonia derived from 1 year of ground-based lidar measurements,” Atmos. Chem. Phys. 17, 3619–3636 (2017).

    Article  ADS  Google Scholar 

  21. E. Kienast-Sjögren, C. Rolf, P. Seifert, U. K. Krieger, P. Bei, B. P. Luo, M. Krämer, and T. Peter, “Climatological and radiative properties of midlatitude cirrus clouds derived by automatic evaluation of lidar measurements,” Atmos. Chem. Phys. 16, 7605–7621 (2016).

    Article  ADS  Google Scholar 

  22. V. N. Ivanov, D. S. Zubachev, V. A. Korshunov, and D. G. Sakhibgareev, “Network lidar AK-3 for middle atmosphere sensing: Design, methods of measurements, results,” Tr. GGO, No. 598, 155–187 (2020).

    Google Scholar 

  23. K. Sassen and B. S. Cho, “Subvisual—thin cirris lidar dataset for satellite verification and climatological research,” J. Appl. Meteorol. 31, 1275–1285 (1992).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

I am grateful to D.S. Zubachev for the preparation of experimental data on lidar sensing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Korshunov.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by A. Nikol’skii

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korshunov, V.A. Multiple Scattering in Cirrus Clouds and Taking It into Account When Interpreting Lidar Measurements in the Stratosphere. Atmos Ocean Opt 35, 151–157 (2022). https://doi.org/10.1134/S1024856022020051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856022020051

Keywords:

Navigation