Skip to main content
Log in

Scattering on Excited Ions as a Reason for Detecting Imaginary Aerosols in the Middle Atmosphere

  • REMOTE SENSING OF ATMOSPHERE, HYDROSPHERE, AND UNDERLYING SURFACE
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

Results of two-frequency lidar sounding of the atmosphere in the altitude range 25–600 km at the Kamchatka lidar station (52°58′17″ N, 158°15′07″ E) are discussed. The possibility of a manifestation of resonance scattering in the formation of imaginary aerosols in the middle atmosphere is studied. Examples are given where strong scattering at wavelengths of 532.08 and 561.106 nm in the middle atmosphere can be explained by resonance scattering on excited ions of atomic oxygen and nitrogen. These ions may appear as a result of the ionization of the atmosphere by relativistic electrons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. V. V. Bychkov, A. S. Perezhogin, A. S. Perezhogin, B. M. Shevtsov, V. N. Marichev, G. G. Matvienko, A. S. Belov, and A. A. Cheremisin, “Lidar observations of aerosol occurrence in the middle atmosphere of Kamchatka in 2007–2011,” Atmos. Ocean. Opt. 25 (3), 228–235 (2012).

    Article  Google Scholar 

  2. V. V. Bychkov, Y. A. Nepomnyashchiy, A. S. Perezhogin, and B. M. Shevtsov, “Lidar returns from the upper atmosphere and possible causes of their generation,” Atmos. Ocean. Opt. 28 (4), 303–307 (2015).

    Article  Google Scholar 

  3. V. V. Bychkov, A. S. Perezhogin, I. N. Seredkin, and B. M. Shevtsov, “On the role of the method of measuring the background signal in the lidar measurements of the upper atmosphere,” Proc. SPIE—Int. Soc. Opt. Eng. 10466, 1046677 (2017).

  4. V. V. Bychkov and I. N. Seredkin, “Resonance scattering in the thermosphere as an indicator of superthermal electron precipitation,” Atmos. Ocean. Opt. 34 (1), 26–33 (2021).

    Article  Google Scholar 

  5. A. Kramida, Yu. Ralchenko, and J. Reader, NIST ASD TEAM. NIST Atomic Spectra Database (Ver. 5.5.2), National Institute of Standards and Technology, Gaithersburg. https://physics.nist.gov/asd. Cited April 19, 2020.

  6. A. V. El’nikov, V. N. Marichev, K. D. Shelevoi, and D. I. Shelefontyuk, “Laser radar for sensing vertical stratification of atmospheric aerosol,” Opt. Atmos. Okeana 1 (4), 117–123 (1988).

    Google Scholar 

  7. V. V. Bychkov, A. S. Perezhogin, B. M. Shevtsov, V. N. Marichev, P. V. Novikov, and A. A. Cheremisin, “Seasonal features of the appearance of aerosol scattering in the stratosphere and mesosphere of Kamchatka from the results of lidar observations in 2007–2009,” Izv. Atmos. Ocean. Phys. 47 (5), 603–609 (2011).

    Article  Google Scholar 

  8. M. G. Deminov, “Earth’s ionosphere,” in Plasma Heliophysics (Fizmatlit, Moscow, 2008), vol. 2, p. 92–163 [in Russian].

    Google Scholar 

  9. M. G. Deminov and V. V. Khegai, “Analytical approximation of the rate of ionization by auroral electrons,” Geomag. Aeron. 20 (1), 145–147 (1980).

    Google Scholar 

  10. A. Omkhol’t, Polar Auroras (Mir, Moscow, 1974) [in Russian].

  11. M. Picone, A. E. Hedin, and D. Drob, NRLMSISE-00 Model 2001. https://ccmc.gsfc.nasa.gov/modelweb/ atmos/nrlmsise00.html. Cited April 19, 2020.

  12. N. N. Shchefov, A. I. Semenov, and V. Yu. Khomich, Radiation of the Upper Atmosphere as an Indicator of Its Structure and Dynamics (GEOS, Moscow, 2006) [in Russian].

    Google Scholar 

  13. A. V. El’nikov, G. M. Krekov, and V. N. Marichev, “Lidar observations of the stratospheric aerosol layer over Western Siberia,” Izv. Akad. Nauk SSSR. Fiz. Atmos. Okeana 24 (8), 818–823 (1988).

    Google Scholar 

  14. P. B. Russell, T. J. Swissler, and M. P. McCormick, “Methodology for error analysis and simulation of lidar aerosol measurements,” Appl. Opt. 18 (22), 3783–3797 (1979).

    Article  ADS  Google Scholar 

  15. P. B. Russell, B. M. Morley, J. M. Livingston, G. W. Grams, and E. M. Patterson, “Aerosol and cloud measurements by an independent-wavelength technique,” Appl. Opt. 21 (9), 1541–1563 (1982).

    Article  ADS  Google Scholar 

  16. A. Dm. Danilov, Chemistry of the Ionosphere (Gidrometeoizdat, Leningrad, 1967) [in Russian].

    Google Scholar 

Download references

Funding

The work was carried out within the state assignment on the theme (2021–2023) Physical Processes in the System of Near Space and Geospheres under Solar and Lithospheric Impacts. Registration no. АААА-А21-121011290003-0 with the use of equipment of the Collective Use Center of the Institute of Cosmophysical Research and Radio Wave Propagation, Far Eastern Branch, Russian Academy of Sciences, North-Eastern Heliogeophysical Center (SKR_558279, UNU 351757). The work was partly financially supported by the Russian Foundation for Basic Research (grant nos. 19-05-00543 A and 19-5-700008 r_a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Bychkov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Ponomareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bychkov, V.V., Seredkin, I.N. & Marichev, V.N. Scattering on Excited Ions as a Reason for Detecting Imaginary Aerosols in the Middle Atmosphere. Atmos Ocean Opt 34, 104–110 (2021). https://doi.org/10.1134/S1024856021020032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856021020032

Keywords:

Navigation