Skip to main content
Log in

Metal-Carbon Composites Based on Carbonized Melamine-Formaldehyde Polymer and Their Electrocatalytic Properties

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Metal/N-doped carbon (M/C–N) composites were prepared using the melamine-formaldehyde polymer (MFP) as a source of C–N carbon and a metal salt (Cu2+, Ni2+, Co2+) by two synthesis methods: (1) introduction of a metal salt by in situ polycondensation of melamine with formaldehyde followed by thermal treatment at 400, 500, and 700°C and (2) chemical reduction of metal cations in the presence of carbonized MFP. The phase compositions and morphology of the resulting composites were analyzed by X-ray diffractometry and electron microscopy. Their electrocatalytic properties were studied in the electrohydrogenation of acetophenone. The Cu/C–N composites prepared by method 2 showed higher electrocatalytic activity due to the additional reduction of copper cations in the electrochemical system. The synthesis of composites by method 1 and their thermal treatment led to the formation of metal oxides and their reduced forms, lying mostly inside the carbon matrix of the carbonized MFP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Mabena, L.F., Ray, S.S., Mhlanga, S.D., and Coville, N.J., Nitrogen-doped carbon nanotubes as a metal catalyst support, Appl. Nanosci., 2011, vol. 1, p. 67.

    Article  CAS  Google Scholar 

  2. He, L., Weniger, F., Neumann, H., and Beller, M., Synthesis, characterization, and application of metal nanoparticles supported on nitrogen-doped carbon: catalysis beyond electrochemistry, Angew. Chem., Int. Ed., 2016, vol. 55, p. 2.

    Article  Google Scholar 

  3. Rangraz, Ya., Heravi, V.V., and Elhampour, A., Recent advances on heteroatom-doped porous carbon/metal materials: fascinating heterogeneous catalysts for organic transformations, Chem. Rec., 2021, vol. 21, p. 1.

    Article  Google Scholar 

  4. Thakur, A.K., Kurtyka, K., Majumder, M., Yang, X., Ta, H.Q., Bachmatiuk, A., Liu, L., Tizebicka, B., and Rummeli, M.H., Recent advances in boron- and nitrogen-doped carbon-based materials and their various applications, Adv. Mater. Interfaces, 2022, article no. 2101964.

  5. Shen, W.Z. and Fan, W.B., Nitrogen-containing porous carbons: synthesis and application, J. Mater. Chem. A, 2013, vol. 1, p. 999.

    Article  CAS  Google Scholar 

  6. Majeed, S., Zhao, J., Zhang, L., Anjum, S., Liu, Zh., and Xu, G., Synthesis and electrochemical applications of nitrogen-doped carbon nanomaterials, Nanotechnol. Rev., 2013, vol. 2, p. 615.

    Article  CAS  Google Scholar 

  7. Wei, Q., Tong, X., Zhang, G., Qiao, J., Gong, Q., and Sun, Sh., Nitrogen-doped carbon nanotube and graphene materials for oxygen reduction reactions, Catalysts, 2015, vol. 5, p. 1574.

    Article  CAS  Google Scholar 

  8. Tachibana, N., Yukawa, Y., Morikawa, K., Kawaguchi, M., and Shimanoe, K., Pt nanoparticles supported on nitrogen-doped porous carbon as efficient oxygen reduction catalysts synthesized via a sample alcohol reduction method, SN Appl. Sci., 2021, vol. 3, p. 338.

    Article  CAS  Google Scholar 

  9. Zhu, Q.-L. and Xu, Q., Immobilization of ultrafine metal nanoparticles to high-surface-area materials and their catalytic applications, Chem., 2016, vol.1, p. 220.

    Article  CAS  Google Scholar 

  10. Wu, G., Santandreu, A., Kellogg, W., Gupta, Sh., Ogoke, O., Zhang, H., Wang, H.-L., and Dai, L., Carbon nanocomposite catalysts for oxygen reduction and evolution reaction: From nitrogen doping to transition-metal addition, Nano Energy, 2016, vol. 29, p. 83.

    Article  CAS  Google Scholar 

  11. Sundaram, R.M., Sekiguchi, A., Sekiya, M., Yamada, T., and Hata, K., Copper/carbon nanotube composites: research trends and outlook, R. Soc. Open Sci., 2018, vol. 5, article no. 180814.

    Article  CAS  Google Scholar 

  12. Kozhitov, L.V., Kozlov, V.V., Kostikov, A.V., and Popkova, A.V., New metal-carbon nanocomposites and carbon nanocrystalline material with promising properties for the development of electronics, Mater. Elektron. Tekh., 2012, no. 3, p. 59.

  13. Muratov, D.G., Yakushko, E.V., Kozhitov, L.V., Popkova, A.V., and Pushkarev, M.A., Formation of Ni/C nanocomposites based on polyacrylonitrile under the influence of IR radiation, Mater. Elektron. Tekh., 2013, no. 1, p. 61.

  14. Daems, N., Wouters, J., Van Goethem, C., Baert, K., Poleunis, C., Declorte, A., Hubin, A., Vankelecom, I.F.J., and Pescarmona, P.P., Selective reduction of nitrobenzene to aniline over electrocatalysts based on nitrogen-doped carbons containing non-noble metals, Appl. Catal., B, 2018, vol. 226, p. 509.

    Article  CAS  Google Scholar 

  15. Wu, G., More, K.L., Johnston, Ch.M., and Zelenay, P., High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron and cobalt, Science, 2011, vol. 332, p. 443.

    Article  CAS  Google Scholar 

  16. Friedel, B. and Weber, S.G., Preparation of monodisperse, submicrometer carbon spheres by pyrolysis of melamine-formaldehyde resin, Small, 2006, vol. 2, p. 859.

    Article  CAS  Google Scholar 

  17. Xiong, W., Kang, J.H., and Jung, Y., Preparation of nitrogen-doped porous carbon from melamine-formaldehyde resins crosslinked by phytic acid, Int. J. Electrochem. Sci., 2018, vol. 13, p. 852.

    Article  CAS  Google Scholar 

  18. Yu, J., Guo, M., Muhammad, F., Wang, A., Yu, G., Ma, H., and Zhu, G., Simple fabrication of an ordered nitrogen-doped mesoporous carbon with resorcinol-melamine-formaldehyde resin, Microporous Mesoporous Mater., 2014, vol. 190, p. 117.

    Article  CAS  Google Scholar 

  19. Pretschuh, C., Schwarzinger, C., Abdala, A.A., and Vukusic, S., Characterization of conductive nanographite melamine composites, Open J. Compos. Mater., 2014, vol. 4, p. 61.

    Article  Google Scholar 

  20. Tiwari, D., Goel, Ch., Bhunia, H., and Bajpai, P., Melamine-formaldehyde derived porous carbons for adsorption of CO2 capture, J. Environ. Manage., 2017, vol. 197, p. 415.

    Article  CAS  Google Scholar 

  21. Zhong, H., Zhang, H., Liu, S., Deng, Ch., and Wang, M., Nitrogen-enriched carbon from melamine resins with superior oxygen reduction reaction activity, ChemSusChem., 2013, vol. 6, p. 807.

    Article  CAS  Google Scholar 

  22. Balla, P.K., Kumar, B.V.N., Ganesan, K., Shaik, E.B., and Rao, K.R., Nano casting fabrication of porous N‑doped carbon using melamine-formaldehyde resins, AIP Conf. Proc., 2018, vol. 1992, article no. 040016.

    Article  Google Scholar 

  23. Visurkhanova, Ya.A., Ivanova, N.M., Tusupbekova, G.K., and Izbastenova, D.S., Synthesis and the characteristic melamine formaldehyde composites, Adv. Mater. Res., 2014, vol. 1040, p. 393.

    Article  Google Scholar 

  24. Pomogailo, A.D., Rozenberg, A.S., and Uflyand, I.E., Nanochastitsy metallov v polimerakh (Metal Nanoparticles in Polymers), Moscow: Khimiya, 2000.

  25. Ivanova, N.M., Soboleva, E.A., Visurkhanova, Ya.A., and Kirilyus, I.V., Electrocatalytic activity of polyaniline-copper composites in electrohydrogenation of p‑nitroaniline, Russ. J. Electrochem., 2015, vol. 51, p. 166.

    Article  CAS  Google Scholar 

  26. Visurkhanova, Ya.A., Soboleva, E.A., Ivanova, N.M., and Muldakhmetov, Z.M., Thermal and electrochemical reduction of nickel(II) ferrite under the influence of polymer stabilizers, Bull. Karaganda Univ., Chem. Ser., 2020, no. 2 (98), p. 42.

  27. Manjunatha, M., Srinivas Reddy, G., Mallikarjunaiah, K.J., Ramakrishna, Damle, and Ramesh, K.P., Determination of phase composition of cobalt nanoparticles using 59Co internal field nuclear magnetic resonance, J. Supercond. Novel Magn., 2019, vol. 32, p. 3201.

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by the Science Committee of the Ministry of Education and Science of Kazakhstan Republic (project no. АР08855930).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Ivanova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by L. Smolina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanova, N.M., Muldakhmetov, Z.M., Soboleva, E.A. et al. Metal-Carbon Composites Based on Carbonized Melamine-Formaldehyde Polymer and Their Electrocatalytic Properties. Russ J Electrochem 58, 946–956 (2022). https://doi.org/10.1134/S1023193522100056

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193522100056

Keywords:

Navigation