Skip to main content
Log in

Structure and Transport Characteristics of Single-Crystal and Ceramic ZrO2–Y2O3 Solid Electrolytes

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Directionally solidified single crystals of (ZrO2)1 – x(Y2O3)x solid solutions (x = 0.08–0.12) are grown. The effect of the concentration of the stabilizing yttrium oxide on the transport characteristics of the ZrO2-based single-crystal solid solutions is studied. In the studied composition range, it is the (ZrO2)0.91(Y2O3)0.09 crystal that has the maximal electrical conductivity. This crystal was milled, the resulting powder was used as a starting material for the manufacturing of ceramic samples by slip casting onto a moving substrate. The grains of the ceramic samples are sized 10–30 μm; the material density is 5.86 g/cm2. A comparative analysis of the structure and electrophysical properties of ceramic and single-crystal samples of the (ZrO2)0.91(Y2O3)0.09 solid electrolytes is carried out. The described method of the ceramic sample preparation is shown not leading to changes in their phase composition and crystal structure. The ionic conductivity of the single crystals and ceramics in the 973–1173 K temperature range were close to each other; at a temperature of 1173 K, their conductivity values are 0.076 and 0.065 S/cm, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Goodenough, J.B., Oxide-ion electrolytes, Annu. Rev. Mater. Res., 2003, vol. 33, p. 91.

    Article  CAS  Google Scholar 

  2. Kharton, V.V., Marques, F.M.B., and Atkinson, A., Transport properties of solid oxide electrolyte ceramics: A brief review, Solid State Ionics, 2004, vol. 174, p. 135.

    Article  CAS  Google Scholar 

  3. Kilner, J.A. and Steele, B.C.H., Nonstoichiometric Oxides, New York.: Academic, 1981. p. 233.

    Google Scholar 

  4. Yamamoto, O., Solid oxide fuel cells: fundamental aspects and prospects, Electrochim. Acta, 2000, vol. 45, nos. 15–16, p. 2423.

    Article  CAS  Google Scholar 

  5. Wachsman, E.D. and Lee, K.T., Lowering the temperature of solid oxide fuel cells, Science, 2011, vol. 334, p. 935.

    Article  CAS  PubMed  Google Scholar 

  6. Han, F., Mücke, R., Gestel, T.V., Leonide, A., Menzler, N.H., Buchkremer, H.P., and Stöver, D., Novel high-performance solid oxide fuel cells with bulk ionic conductance dominated thin-film electrolytes, J. Power Sources, 2012, vol. 218, p. 157.

    Article  CAS  Google Scholar 

  7. Omar, S., Belda, A., Escardino, A., and Bonanos, N., Ionic conductivity ageing investigation of 1Ce10ScSZ in different partial pressures of oxygen, Solid State Ionics, 2010, vol. 184, p. 2.

    Article  Google Scholar 

  8. Jasper, A., Kilner, J.A., and McComb, D.W., TEM and impedance spectroscopy of doped ceria electrolytes, Solid State Ionics, 2008, vol. 179, nos. 21–26, p. 904.

    Article  CAS  Google Scholar 

  9. Jais, A.A., Ali, S.A.M., Anwar, M., Somalu, M.R., Muchtar, A., Isahak, W.N.R.W., Tan, C.Y., Singh, R., and Brandon, N.P., Enhanced ionic conductivity of scandia-ceria-stabilized-zirconia (10Sc1CeSZ) electrolyte synthesized by the microwave-assisted glycine nitrate process, Ceram. International, 2017, vol. 43, no. 11, p. 8119.

    Article  Google Scholar 

  10. Zhang, J., Lenser, C., Menzler, N.H., and Guillon, O., Comparison of solid oxide fuel cell (SOFC) electrolyte materials for operation at 500°C, Solid State Ionics, 2020, vol. 344, p. 115138.

    Article  CAS  Google Scholar 

  11. Yeh, T.-H., Hsu, W.-C., and Chou, C.-C., Mechanical and electrical properties of ZrO2 (3Y) doped with RENbO4 (RE = Yb, Er, Y, Dy, YNd, Sm, Nd), J. Phys. IV France, 2005, vol. 128, p. 213.

    Article  CAS  Google Scholar 

  12. Kumar, A., Jaiswa, A., Sanbui, M., and Omar, S., Oxygen-ion conduction in scandia-stabilized zirconia-ceria solid electrolyte (xSc2O3–1CeO2–(99 – x)ZrO2, 5 ≤ x ≤ 11), J. Amer. Ceram. Soc., 2016, vol. 100, p. 659.

    Article  Google Scholar 

  13. Lee, D.-S., Kim, W.S., Choi, S.H., Kim, J., Lee, H.-W., and Lee, J.-H., Characterization of ZrO2 co-doped with Sc2O3 and CeO2 electrolyte for the application of intermediate temperature SOFCs, Solid State Ionics, 2005, vol. 176, nos. 1–2, p. 33.

    Article  CAS  Google Scholar 

  14. Chen, X.J., Khor, K.A., Chan, S.H., and Yu, L.G., Influence of microstructure on the ionic conductivity of yttria-stabilized zirconia electrolyte, Mater. Sci. Eng.: A, 2002, vol. 335, nos. 1–2, p. 246.

    Article  Google Scholar 

  15. Abbas, H.A., Argirusis, C., Kilo, M., Wiemhöfer, H.-D., Hammad, F.F., and Hanafi, Z.M., Preparation and conductivity of ternary scandia-stabilised zirconia, Solid State Ionics, 2011, vol. 184, no. 1, p. 6.

    Article  CAS  Google Scholar 

  16. Tien, T.Y., Grain boundary conductivity of Zr0.84Ca0.16O1.84 ceramics, J. Appl. Phys., 1964, vol. 35, p. 122.

    Article  CAS  Google Scholar 

  17. Osiko, V.V., Borik, M.A., and Lomonova, E.E., Handbook of Crystal Growth, Berlin: Springer, 2010, p. 433–469.

    Google Scholar 

  18. Spirin, A., Ivanov, V., Nikonov, A., Lipilin, A., Paranin, S., Khrustov, V., and Spirina, A., Scandia-stabilized zirconia doped with yttria: synthesis, properties, and ageing behavior, Solid State Ionics, 2012, vol. 225, p. 448.

    Article  CAS  Google Scholar 

  19. Omar, S., Najib, W.B., Chen, W., and Bonanos, N., Electrical conductivity of 10 mol % Sc2O3–1 mol % M2O3–ZrO2 ceramics, J. Amer. Ceram. Soc., 2012, vol. 95, no. 6, p. 1965.

    Article  CAS  Google Scholar 

  20. Rocha, R.A., Muccillo, E.N.S., Dessemonda, L., and Djurado, E., Thermal ageing of nanostructured tetragonal zirconia ceramics: characterization of interfaces, J. Europ. Ceram. Soc., 2010, vol. 30, p. 227.

    Article  CAS  Google Scholar 

  21. Araki, W., Koshikawa, T., Yamaji, A., and Adachi, T., Degradation mechanism of scandia-stabilised zirconia electrolytes: discussion based on annealing effects on mechanical strength, ionic conductivity, and Raman spectrum, Solid State Ionics, 2009, vol. 180, nos. 28–31, p. 1484.

    Article  CAS  Google Scholar 

  22. Hirano, M., Watanabe, S., Kato, E., Mizutani, Y., Kawai, M., and Nakamura, Y., High electrical conductivity and high fracture strength of Sc2O3-doped zirconia ceramics with submicrometer grains, J. Amer. Ceram. Soc., 1999, vol. 82, no. 10, p. 2861.

    Article  CAS  Google Scholar 

  23. Irvine, J.T.S., Sinclair, D.C., and West, A.R., Electroceramics: Characterization by impedance spectroscopy, Adv. Mater., 1990, vol. 2, no. 3, p. 132.

    Article  CAS  Google Scholar 

  24. Hui, S.R., Roller, J., Yick, S., Zhang, X., Decés-Petit, C., Xie, Y., Maric, R., and Ghosh, D., A brief review of the ionic conductivity enhancement for selected oxide electrolytes, J. Power Sources, 2007, vol. 172, no. 2, p. 493.

    Article  CAS  Google Scholar 

  25. Kilo, M., Taylor, M.A., Argirusis, C., Borchardt, G., Lesage, B., Weber, S., Scherrer, S., Scherrer, H., Schroeder, M., and Martin, M., Cation self-diffusion of 44Ca, 88Y and 96Zr in single crystalline calcia- and yttria-doped zirconia, J. Appl. Phys., 2003, vol. 94, no. 12, p. 7547.

    Article  CAS  Google Scholar 

  26. Chevalier, J., Gremillard, L., Virkar, A.V., and Clarke, D.R., The tetragonal-monoclinic transformation in zirconia: lessons learned and future trends, J. Amer. Ceram. Soc., 2009, vol. 92, no. 9, p. 1901.

    Article  CAS  Google Scholar 

  27. Aktas, B., Tekeli, S., and Kucuktuvek, M., Electrical conductivity of Er2O3-doped c-ZrO2 ceramics, J. Mater. Eng. Perform., 2014, vol. 23, no. 1, p. 349.

    Article  CAS  Google Scholar 

  28. Cheikh, A., Madani, A., Touati, A., Boussetta, H., and Monty, C., Ionic conductivity of zirconia based ceramics from single crystals to nanostructured polycrystals, J. Europ. Ceram. Soc., 2001, vol. 21, nos. 10–11, p. 1837.

    Article  CAS  Google Scholar 

  29. Aoki, M., Chiang, Y.-M., Kosacki, I., Lee, L.J.-R., Tuller, H., and Liu, Y., Solute segregation and grain-boundary impedance in high-purity stabilized zirconia, J. Amer. Ceram. Soc., 1996, vol. 79, no. 5, p. 1169.

    Article  CAS  Google Scholar 

  30. Shukla, S., Seal, S., Vij, R., and Bandyopadhyay, S., Reduced activation energy for grain growth in nanocrystalline yttria-stabilized zirconia, Nano Letters, 2003, vol. 3, no. 3, p. 397.

    Article  CAS  Google Scholar 

  31. Mondal, P., Klein, A., Jaegermann, W., and Hahn, H., Enhanced specific grain boundary conductivity in nanocrystalline Y2O3-stabilized zirconia, Solid State Ionics, 1999, vol. 118, nos. 3–4, p. 331.

    Article  CAS  Google Scholar 

  32. Choen, K.-W., Chen, J., and Xu, R., Metal–organic vapor deposition of YSZ electrolyte layers for solid oxide fuel cell applications, Thin Solid Films, 1997, vol. 304, no. 1–2, p. 106.

    Article  Google Scholar 

  33. Liaw, B.Y. and Weppner, W., Low temperature limiting-current oxygen sensors based on tetragonal zirconia polycrystals, J. Electrochem. Soc., 1991, vol. 138, no. 8, p. 2478.

    Article  CAS  Google Scholar 

  34. Brett, D.J.L., Atkinson, A., Brandon, N.P., and Skinner, S.J., Intermediate temperature solid oxide fuel cells, Chem. Soc. Rev., 2008, vol. 37, p. 1568.

    Article  CAS  PubMed  Google Scholar 

  35. Badwal, S.P.S. and Drennan, J., The effect of thermal history on the grain boundary resistivity of Y-TZP materials, Solid State Ionics, 1988, vol. 28–30, p. 1451.

    Article  Google Scholar 

  36. Ye, F., Mori, T., Ou, D.R., Takahashi, M., Zou, J., and Drennan, J., Ionic conductivities and microstructures of ytterbium-doped ceria, J. Electrochem. Soc., 20007, vol. 154, no. 2, p. B180.

  37. Gerhardt, R. and Nowick, A.S., Grain boundary effect in ceria doped with trivalent cations: I, Electrical measurements, J. Amer. Ceram. Soc., 1986, vol. 69, no. 9, p. 641.

    Article  CAS  Google Scholar 

  38. Wang, D.Y. and Nowick, A.S., The “grain-boundary effect” in doped ceria solid electrolytes, J. Solid State Chem., 1980, vol. 35, no. 3, p. 325.

    Article  CAS  Google Scholar 

  39. Guo, X. and Waser, R., Electrical properties of the grain boundaries of oxygen ion conductors: Acceptor-doped zirconia and ceria, Prog. Mater. Sci., 2006, vol. 51, p. 151.

    Article  CAS  Google Scholar 

  40. Guo, X. and Maier, J., Grain boundary blocking effect in zirconia: a Schottky barrier analysis, J. Electrochem. Soc., 2001, vol. 148, no. 3, p. E121.

    Article  CAS  Google Scholar 

  41. Tuller, H.L., Ionic conduction in nanocrystalline materials, Solid State Ionics, 2000, vol. 131, nos. 1–2, p. 143.

    Article  CAS  Google Scholar 

  42. Heitjans, P. and Indris, S., Diffusion and ionic conduction in nanocrystalline ceramics, J. Phys: Condens. Matter, 2013, vol. 15, no. 30, p. R1257.

    Google Scholar 

  43. Badwal, S.P.S., Grain boundary resistivity in zirconia-based materials: effect of sintering temperatures and impurities, Solid State Ionics, 1995, vol. 76, nos. 1–2, p. 67.

    Article  CAS  Google Scholar 

  44. Mondal, P. and Hahn, H., Investigation of the complex conductivity of nanocrystalline Y2O3-stabilized zirconia, Ber. Bunsenges. Phys. Chem., 1997, vol. 101, no. 11, p. 1765.

    Article  CAS  Google Scholar 

  45. Lee, J.-H., Mori, T., Li, J.-G., Ikegami, T., Komatsu, M., and Haneda, H., Improvement of grain-boundary conductivity of 8 mol % yttria-stabilized zirconia by precursor scavenging of siliceous phase, J. Electrochem. Soc., 2000, vol. 147, no. 7, p. 2822.

    Article  CAS  Google Scholar 

  46. Maier, J., Space charge regions in solid two phase systems and their conduction contribution – II contact equilibrium at the interface of two ionic conductors and the related conductivity effect, Ber. Bunsenges. Phys. Chem., 1985, vol. 89, no. 4, p. 355.

    Article  CAS  Google Scholar 

  47. Guo, X., Sigle, W., Fleig, J., and Maier, J., Role of space charge in the grain boundary blocking effect in doped zirconia, Solid State Ionics, 2002, vol. 154–155, p. 555.

    Article  Google Scholar 

  48. Liu, T., Zhang, X., Wang, X., Yu, J., and Li, L., A review of zirconia-based solid electrolytes, Ionics, 2016, vol. 22, p. 2249.

    Article  CAS  Google Scholar 

  49. Röwer, R., Knöner, G., Reimann, K., Schaefer, H.-E., and Södervall, U., Oxygen diffusion in YSZ single crystals at relatively low temperatures, Phys. Stat. Sol. B, 2003, vol. 239, no. 2, p. R1.

    Article  Google Scholar 

  50. Badwal, S.P.S. and Rajendran, S., Effect of micro- and nano-structures on the properties of ionic coductors, Solid State Ionics, 1994, vol. 70–71, p. 83.

    Article  Google Scholar 

  51. Lomonova, E.E. and Osiko, V.V., Growth of Zirconia Crystal by Skull-Mellting Technique, in Crystal Growth Technology, Scheel, H.J. and Fukuda, T., eds., New York: Wiley, 2003, p. 461–486.

    Google Scholar 

  52. Kuz’minov, Yu.S., Lomonova, E.E., and Osiko, V.V., Cubic Zirconia and Skull Melting, Cambridge: Cambr. Internat. Sci. Publ., 2009.

    Google Scholar 

  53. Yashima, M., Sasaki, S., Kakihana, M., Yamaguchi, Y., Arashi, H., and Yoshimura, M., Oxygen-induced structural change of the tetragonal phase around the tetragonal-cubic phase boundary in ZrO2–YO1.5 solid solutions, Acta Crystallogr. B Struct. Sci., 1994, vol. B50, p. 663.

    Article  CAS  Google Scholar 

  54. Yashima, M., Ohtake, K., Kakihana, M., Arashi, H., and Yoshimura, M., Determination of tetragonal-cubic phase boundary of Zr1 – xRxO2 – x/2 (R = Nd, Sm, Y, Er and Yb) by Raman scattering, J. Phys. Chem. Solids, 1996, vol. 57, no. 1, p. 17.

    Article  Google Scholar 

  55. Hemberger, Y., Wichtner, N., Berthold, C., and Nickel, K.G., Quantification of yttria in stabilized zirconia by Raman spectroscopy, Int. J. Appl. Ceram. Technol., 2016, vol. 13, no. 1, p. 116.

    Article  CAS  Google Scholar 

  56. Borik, M.A., Bredikhin, S.I., Bublik, V.T., Kulebyakin, A.V., Kuritsyna, I.E., Lomonova, E.E., Milovich, P.O., Myzina, V.A., Osiko, V.V., Ryabochkina, P.A., and Tabachkova, N.Y., Structure and conductivity of yttria and scandia-doped zirconia crystals grown by skull melting, J. Amer. Ceram. Soc., 2017, vol. 100, no. 12, p. 5536.

    Article  CAS  Google Scholar 

  57. Agarkov, D.A., Borik, M.A., Bredikhin, S.I., Burmistrov, I.N., Eliseeva, G.M., Kolotygin, V.A., Kulebyakin, A.V., Kuritsyna, I.E., Lomonova, E.E., Milovich, F.O., Myzina, V.A., Ryabochkina, P.A., Taba-chkova, N.Yu., and Volkova, T.V., Structure and transport properties of zirconia crystals co-doped by scandia, ceria and yttria, J. Materiomics, 2019, vol. 5, no. 2, p. 273.

    Article  Google Scholar 

  58. Guo, X., Roles of alumina in zirconia for functional applications, J. Amer. Ceram. Soc., 2003, vol. 86, no. 11, p. 1867.

    Article  CAS  Google Scholar 

  59. Miyayama, M., Yanagida, H., and Asada, A., Effects of Al2O3 additions on resistivity and microstructure of yttria-stabilized zirconia, J. Amer. Ceram. Soc. Bull., 1986, vol. 65, no. 4, p. 74.

    Google Scholar 

  60. Navarro, L.M., Recio, P., Jurado, J.R., and Duran, P., Preparation and properties evaluation of zirconia-based/Al2O3 composites as electrolytes for solid oxide fuel cell systems, Part III, Mechanical and electrical characterization, J. Mater. Sci., 1995, vol. 30, p. 1949.

    Article  CAS  Google Scholar 

  61. Feighery, J. and Irvine, J.T.S., Effect of alumina additions upon electrical properties of 8 mol % yttria-stabilized zirconia, Solid State Ionics, 1999, vol. 121, p. 209.

    Article  CAS  Google Scholar 

  62. Ross, I.M., Rainforth, W.M., McComb, D.W., Scott, A.J., and Brydson, R., The role of trace additions of alumina to yttria–tetragonal zirconia polycrystals (Y-TZP), Scr. Mater., 2001, vol. 45, no. 6, p. 653.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, grant no. 19-72-10113. The structure study was carried out with the equipment of the Common Use Center “Material Science and Metallurgy”; it obtained a financial support from the Ministry of Education and Science of Russian Federation (grant no. 075-15-2021-696).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Yu. Tabachkova.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by Yu. Pleskov

Published based on the materials of the VII All-Russian Conference with International Participation “Fuel Cells and Power Plants Based on Them”, Chernogolovka, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lomonova, E.E., Agarkov, D.A., Borik, M.A. et al. Structure and Transport Characteristics of Single-Crystal and Ceramic ZrO2–Y2O3 Solid Electrolytes. Russ J Electrochem 58, 105–113 (2022). https://doi.org/10.1134/S1023193522020069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193522020069

Keywords:

Navigation