Skip to main content
Log in

Improved Effect of Water-Soluble Binder NV-1A on the Electrochemical Proprieties LFP Electrodes

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemical properties of batteries consist of LiFePO4 (LFP) with the NV-1A binder were studied in depth. It was shown that SEI layer for NV-1A formed on the electrodes has a lower resistance as compared with PVDF. It is known that the increase discharge current loads lead to decrease an average voltage and the specific capacity of a battery. However, in the case of NV-1A binder the changing average discharge voltage and the specific capacity at the increasing current loads is not significant. Thus, the capacity fall is 18 and 220 mA h for NV-1A and PVDF binders for LIBs consist from LFP cathode material with different binders with an increase in discharge currents from 0.1 to 2.0 C, respectively. It should be noticed that the electrochemical properties of the LFP–NV-1A system were completely studied the first time not only in half-cells but in the full battery complete state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Chou, S.-L., Pan, Y., Wang, J.-Z., Liu, H.-K., and Dou, S.-X., Small things make big difference: binder effects on the performance of Li and Na batteries, Phys. Chem. Chem. Phys., 2014, vol. 16, p. 20347.

    Article  CAS  Google Scholar 

  2. Li, J.-T., Wu, Z.-Y., Lu, Y.-Q., and Zhou, Y., Water soluble binder, an electrochemical performance booster for electrode materials with high energy density, Adv. Energy Mater., 2017 vol. 1, p. 1701185.

    Article  Google Scholar 

  3. Lux, S.F., Schappacher, F., Balducci, A., Passerini, S., and Winter, M., Low cost, environmentally benign binders for lithium-ion batteries, J. Electrochem. Soc., 2010, vol. 157, no. 3, p. A320.

    Article  CAS  Google Scholar 

  4. Porcher, W., Lestriez, B., Jouanneau, S., and Guyomard, D., Design of aqueous processed thick LiFePO4 composite electrodes for high-energy lithium battery, J. Electrochem. Soc., 2009, vol. 156, no. 3, p. A133.

    Article  CAS  Google Scholar 

  5. Porcher, W., Moreau, P., Lestriez, B., Jouanneau, S., and Guyomard, D., Is LiFePO4 stable in water?: toward greener Li-ion batteries, Electrochem. Solid-State Lett., 2008, vol. 11, no. 1, p. A4.

    Article  CAS  Google Scholar 

  6. Qiu, L., Shao, Z., Wang, W., Wang, F., et al., Novel functional material carboxymethyl cellulose lithium (CMC-Li) enhanced performance of lithium-ion batteries, RSC Adv., 2014, no. 47, p. 1.

  7. Zhang, Z., Zeng, T., Qu, Ch., et al., Cycle performance improvement of LiFePO4 cathode with polyacrylic acid as binder, Electrochim. Acta, 2012, vol. 80, p. 440.

    Article  CAS  Google Scholar 

  8. Zhang, Z., Zeng, T., Lu, H., Jia, M., et al., Enhanced high-temperature performances of LiFePO4 cathode with polyacrylic acid as binder, ECS Electrochem. Lett., 2012, vol. 1, no. 5, p. A74.

    Article  CAS  Google Scholar 

  9. Cai, Z.P., Liang, Y., Li, W.-S., et al., Preparation and performances of LiFePO4 cathode in aqueous solvent with polyacrylic acid as a binder, J. Power Soc., 2009, vol. 189, p. 547.

    Article  CAS  Google Scholar 

  10. Chonga, J., Xuna, S., Zhenga, H., Songa, X., Liua, G., et al., A comparative study of polyacrylic acid and poly(vinylidene difluoride) binders for spherical natural graphite/LiFePO4 electrodes and cells, J. Power Soc., 2011, vol. 196, p. 7707.

    Article  Google Scholar 

  11. Yuca, N., Zhao, H., Song, X., Dogdu, M.F., Yuan, W., Fu, Y., Battaglia, V.S., Xiao, X., and Liu, G., A systematic investigation of polymer binder flexibility on the electrode performance for lithium-ion batteries, J. ACS Appl. Mater. Interfaces, 2014, vol. 6, p. 17111.

    Article  CAS  Google Scholar 

  12. Aoki, S., Han, Z.-J., Yamagiwa, K., Yabuuchiat, N., et al., Acrylic acid-based copolymers as functional binder for silicon/graphite composite electrode in lithium-ion batteries, J. Electrochem. Soc., 2015, vol. 162, p. A2245.

    Article  CAS  Google Scholar 

  13. Crosby, A.J., Hageman, M., and Duncan, A., Controlling polymer adhesion with “Pancakes,” Langmuir, 2005, vol. 21, p. 11738.

    Article  CAS  Google Scholar 

  14. Zhong, H., Sun, M., Li, Y., He, J., Yang, J., and Zhang, L., The polyacrylic latex: an efficient water-soluble binder for LiNi1/3Co1/3Mn1/3O2 cathode in li-ion batteries, J. Solid State Electrochem., 2016, vol. 20, p. 1.

    Article  CAS  Google Scholar 

  15. Chen, L., Xie, X., Xie, J., Wang, K., and Yang, J., Binder effect on cycling performance of silicon/carbon composite anodes for lithium ion batteries, J. Appl. Electrochem., 2006, vol. 36, p. 1099.

    Article  CAS  Google Scholar 

  16. Wang, G., Xu, J., Wen, M., Cai, R., Ran, R., and Shao, Z., Influence of high-energy ball milling of precursor on the morphology and electrochemical performance of Li4Ti5O12–ball-milling time, Solid State Ionics, 2008, vol. 179, p. 946.

    Article  CAS  Google Scholar 

  17. McNeill, I.C. and Sadeghi, S.M.T., Thermal stability and degradation mechanisms of poly(acrylic acid) and its salts: part 1 poly(acrylic acid), Polym. Degrad. Stab., 1990, vol. 29, p. 233.

    Article  CAS  Google Scholar 

  18. Gaberscek, M., Moskon, J., Erjavec, B., Dominko, R., and Jamnik, J., The importance of interphase contacts in Li ion electrodes: the meaning of the high frequency impedance arc, Electrochem. Solid-State Lett., 2008, vol. 11, no. 10, p. A170.

    Article  CAS  Google Scholar 

  19. Schmidt, J.P., Chrobak, T., Ender, M., Illig, J., Klotz, D., et al., Studies on LiFePO4 as cathode material using impedance spectroscopy, J. Power Soc., 2011, vol. 196, p. 5342.

    Article  CAS  Google Scholar 

  20. Zhanga, Z., Zenga, T., Qua, C., Lu, H., Jia, M., Lai, Y., and Li, J., Cycle performance improvement of LiFePO4 cathode with polyacrylic acid as binder, Electrochim. Acta, 2012, vol. 80, p. 440.

    Article  Google Scholar 

  21. Rohan, R., Kuo, T.-C., Lin, J.-H., Hsu, Y.-C., Li, C.-C., and Lee, J.-T., Dinitrile-mononitrile-based electrolyte system for lithium-ion battery application with the mechanism of reductive decomposition of mononitriles, J. Phys. Chem. C, 2016, vol. 120, p. 6450.

    Article  CAS  Google Scholar 

  22. Kim, Y.-S., Lee, H., and Song, H.-K., Surface complex formation between aliphatic nitrile molecules and transition metal atoms for thermally stable lithium-ion batteries, ACS Appl. Mater. Interfaces, 2014, vol. 6, p. 8913.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Zhejiang Provincial Advanced programs of Postdoctoral Foundation of China (Grant no. ZJ20180096) and “5313” Technology Project of Zhoushan City.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Potapenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Potapenko, O., Potapenko, A., Zhou, C. et al. Improved Effect of Water-Soluble Binder NV-1A on the Electrochemical Proprieties LFP Electrodes. Russ J Electrochem 56, 1043–1050 (2020). https://doi.org/10.1134/S1023193520120174

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193520120174

Keywords:

Navigation