Skip to main content
Log in

Voltammetric and Docking Investigation of the Binding Interaction between (E)-1-[(2-Phenoxyphenylimino)methyl]naphthalen-2-ol and Calf Thymus DNA

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

In vitro interaction between (E)-1-[(2-phenoxyphenylimino)methyl]naphthalen-2-ol (2-PPMN) and calf thymus DNA (ct-DNA) at physiological pH was investigated by means of square-wave (SW) voltammetry and computational docking techniques. SW voltammetry study for 2-PPMN at pH 7.40 showed a cathodic peak at −1.520 V. By adding of ct-DNA, the cathodic current of 2-PPMN decreased due to intermolecular interaction. The effect of temperature on this interaction was also studied using voltammetric studies. The binding constants were determined from voltammetric data. According to van’t Hoff equation, ΔH and ΔS values were calculated as 124.68 kJ mol–1 and 526.16 J mol–1 K–1, respectively. Thermodynamic binding studies of 2-PPMN with ct-DNA suggested that hydrophobic forces played a main role and entropy favoured. The computational docking results revealed that 2-PPMN bound to the minor groove of ct-DNA and this interaction had a binding energy of −7.4 kcal mol–1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Karthik, C.S., Mallesha, L., Santhosh, M.V., Nagashree, S., and Mallu, P., Synthesis, characterization, antimicrobial activity, and optical properties of Schiff bases derived from 4-(aminomethyl) piperidine, Indian J. Adv. Chem. Sci. SI2, 2016, vol. 4, p. 206.

  2. Munawar, K.S., Haroon, S.M., Hussain, S.A., and Raza, H., Schiff bases: multipurpose pharmacophores with extensive biological applications, J. Basic Appl. Sci., 2018, vol. 14, p. 217. https://doi.org/10.6000/1927-5129.2018.14.34

    Article  CAS  Google Scholar 

  3. Murtaza, S., Akhtar, M.S., Kanwal, F., Abbas, A., Ashiq, S., and Shamim, S., Synthesis and biological evaluation of Schiff bases of 4-aminophenazone as an anti-inflammatory, analgesic and antipyretic agent, J. Saudi Chem. Soc., 2017, vol. 21, p. S359. https://doi.org/10.1016/j.jscs.2014.04.003

    Article  CAS  Google Scholar 

  4. Santhosh, M.V., NagendraPrasad, H.S., Nagashree, S., Manukumar, H.M., Mallesha L., and Mallu, P., Synthesis and characterization of Schiff base analogues of fluoroaniline and their antibiocidal activity against MRSA, Curr. Chem. Lett., 2019, vol. 8, p. 169. https://doi.org/10.5267/j.ccl.2019.4.005

    Article  Google Scholar 

  5. Das, R., Saxena, A., Saxena, S., and Khan, G., Electrochemical study of some Schiff base by cyclic voltammetry and its metal complex—DNA interaction study by uv-visible spectroscopy, J. Adv. Electrochem., 2015, vol. 1, p. 19.

    Google Scholar 

  6. Maidul Islam, Md., Chakraborty, M., Pandya, P., Al Masum, A., Gupta, N., and Mukhopadhyay, S., Binding of DNA with rhodamine b: spectroscopic and molecular modeling studies, Dyes Pigments, 2013, vol. 99, p. 412. https://doi.org/10.1016/j.dyepig.2013.05.028

    Article  CAS  Google Scholar 

  7. Khan, S., Malla, A.M., Zafar, A., and Naseem, I., Synthesis of novel coumarin nucleus-based DPA drug-like molecular entity: in vitro DNA/Cu(II) binding, DNA cleavage and pro-oxidant mechanism for anticancer action, PLoS One, 2017, vol. 12, p. e0181783. https://doi.org/10.1371/journal.pone.0181783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Turel, I. and Kljun, J., Interactions of metal ions with DNA, its constituents and derivatives, which may be relevant for anticancer research, Curr. Top. Med. Chem., 2011, vol. 11, p. 2661. https://doi.org/10.2174/156802611798040787

    Article  CAS  PubMed  Google Scholar 

  9. Hurley, L.H. and Boyd, F.L., DNA as a target for drug action, Trends Pharmacol. Sci., 1988, vol. 9, p. 402. https://doi.org/10.1016/0165-6147(88)90067-3

    Article  CAS  PubMed  Google Scholar 

  10. Xu, L., Hu, Y.-X., Li, Y.-C., Zhang, L., Ai, H.-X., Liu, Y.-F., and Liu, H.-S., In vitro DNA binding studies of lenalidomide using spectroscopic in combination with molecular docking techniques, J. Mol. Struct., 2018, vol. 1154, p. 9. https://doi.org/10.1016/j.molstruc.2017.10.029

    Article  CAS  Google Scholar 

  11. Ariyaeifar, M., Rudbari, H.A., Sahihi, M., Kazemi, Z., Kajani, A.A., Zali-Boeini, H., Kordestani, N., Bruno, G., and Gharaghani, S., Chiral halogenated Schiff base compounds: green synthesis, anticancer activity and DNA-binding study, J. Mol. Struct., 2018, vol. 1161, p. 497. https://doi.org/10.1016/j.molstruc.2018.02.042

    Article  CAS  Google Scholar 

  12. Jamshidvand, A., Sahihi, M., Mirkhani, V., Mogha-dam, M., Mohammadpoor-Baltork, I., Tangestaninejad, S., Rudbari, H.A., Kargar, H., Keshavarzi, R., and Gharaghani, S., Studies on DNA binding properties of new Schiff base ligands using spectroscopic, electrochemical and computational methods: influence of substitutions on DNA-binding, J. Mol. Liq., 2018, vol. 253, p. 61. https://doi.org/10.1016/j.molliq.2018.01.029

    Article  CAS  Google Scholar 

  13. Zhang, Y., Wang, X.M., and Ding, L., Interaction between tryptophan-vanillin Schiff base and herring sperm DNA, J. Serb. Chem. Soc., 2010, vol. 75, p. 1191. https://doi.org/10.2298/JSC100128107Z1191

  14. Shahabadi, N., Kashanian, S., and Darabi, F., In vitro study of DNA interaction with a water-soluble dinitrogen Schiff base, DNA Cell Biol., 2009, vol. 28, p. 589. https://doi.org/10.1089/dna.2009.0881

    Article  CAS  PubMed  Google Scholar 

  15. Helal, M.H., Al-Mudaris, Z.A., Al-Douh, M.H., Osman, H., Wahab, H.A., AlNajjar, B.O., Abdallah, H.H., and Majid, A.M.S.A., Diaminobenzene Schiff base, a novel class of DNA minor groove binder, Int. J. Oncol., 2012, vol. 41, p. 504. https://doi.org/10.3892/ijo.2012.1491

    Article  CAS  PubMed  Google Scholar 

  16. Nayab, P.S., Akrema, Ansari, I.A., Shahid, M., and Rahisuddin, New phthalimide-appended Schiff bases: studies of DNA binding, molecular docking and antioxidant activities, Luminescence, 2016, vol. 32, p. 829. https://doi.org/10.1002/bio.3259

    Article  CAS  PubMed  Google Scholar 

  17. Arshad, N., Ahmad, M., Ashraf, M.Z., and Nadeem, H., Spectroscopic, electrochemical DNA binding and in vivo anti-inflammatory studies on newly synthesized Schiff bases of 4-aminophenazone, J. Photochem. Photobiol. B, 2014, vol. 138, p. 331. https://doi.org/10.1016/j.jphotobiol.2014.06.014

    Article  CAS  PubMed  Google Scholar 

  18. Pehlivan, V., Sülfametizolden türeyen bazı Schiff bazlarının DNA ile etkileşimlerinin voltametrik ve spektroskopik incelenmesi, PhD Thesis, Ondokuz Mayıs University, 2019.

  19. Pehlivan, V., Biçer, E., Genç Bekiroğlu, Y., and Dege, N., Electrochemical and spectroscopic studies on the interaction modes of calf thymus DNA with antibacterial Schiff bases obtained from substituted salicylaldehydes and sulfamethizole, Int. J. Electrochem. Sci., 2018, vol. 13, p. 10733. https://doi.org/10.20964/2018.11.40

    Article  CAS  Google Scholar 

  20. Biçer, E., Pehlivan, V., and Genç Bekiroğlu, Y., Synthesis, characterization, in vitro antifungal activities and calf thymus DNA interactions of two different hydroxy benzaldehyde derivative Schiff bases from sulfamethizole: electrochemical, spectroscopic and biological study, Russ. J. Electrochem., 2019, vol. 55, p. 419. https://doi.org/10.1134/S1023193519050045

    Article  Google Scholar 

  21. Macit, M. and Alpaslan, G., Crystal structure, spectroscopic properties and DFT studies on copper(II) complex of bis{(E)-1-[(2-phenoxyphenylimino)methyl]naphthalene-2-ol}chloroform solvate, J. Mol. Struct., 2014, vol. 1072, p. 277. https://doi.org/10.1016/j.molstruc.2014.05.025

    Article  CAS  Google Scholar 

  22. Temel, E., Ağar, E., and Büyükgüngör, O., 1-[(E)-(2-Phenoxyanilino)methylene]-naphthalen-2(1H)-one, Acta Crystallogr. E, 2010, vol. 66, p. o1131. https://doi.org/10.1107/S1600536810013851

    Article  CAS  Google Scholar 

  23. Omanović, D. and Branica, M., Automation of voltammetric measurements by polarographic analyser PAR 384B, Croat. Chem. Acta, 1998, vol. 71, p. 421.

    Google Scholar 

  24. Frisch, A., Dennington, R.D., Keith, T.A., Milliam, J., Nielsen, A.B., Holder, A.J., and Hiscocks, J., GaussView Reference, Version 4.0., Pittsburgh: Gaussian Inc., 2007.

    Google Scholar 

  25. Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., and Ferrin, T.E., UCSF Chimera – a visualization system for exploratory research and analysis, J. Comput. Chem., 2004, vol. 25, p. 1605. https://doi.org/10.1002/jcc.20084

    Article  CAS  Google Scholar 

  26. Maier, J.A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K.E., and Simmerling, C., ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB, J. Chem. Theory Comput., 2015, vol. 11, p. 3696. https://doi.org/10.1021/acs.jctc.5b00255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shapovalov, M.V. and Dunbrack, R.L., A smoothed backbone-dependent rotamer library for proteins derived from adaptive kernel density estimates and regressions, Structure, 2011, vol. 19, p. 844. https://doi.org/10.1016/j.str.2011.03.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Trott, O. and Olson, A.J., AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading, J. Comput. Chem., 2010, vol. 31, p. 455. https://doi.org/10.1002/jcc.21334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Moghadam, N.H., Salehzadeh, S., and Shahabadi, N., Spectroscopic and molecular docking studies on the interaction of antiviral drug nevirapine with calf thymus DNA, Nucleosides, Nucleotides Nucleic Acids, 2017, vol. 36, p. 553. https://doi.org/10.1080/15257770.2017.1346800

    Article  CAS  PubMed  Google Scholar 

  30. Ghoneim, M.M., Mabrouk, E.M., Hassanein, A.M., El-Attar, M.A., and Hesham, E.A., Voltammetric and potentiometric studies of some sulpha drug-Schiff base compounds and their metal complexes, Cent. Eur. J. Chem., 2007, vol. 5, p. 898. https://doi.org/10.2478/s11532-007-0035-7

    Article  CAS  Google Scholar 

  31. Zhang, X., Li, M., Cui, Y., Zhao, J., Cui, Z., Li, Q., and Qu, K., Electrochemical behavior of calcein and the interaction between calcein and DNA, Electroanalysis, 2012, vol. 24, p. 1878. https://doi.org/10.1002/elan.201200192

    Article  CAS  Google Scholar 

  32. Radulović, V., Aleksić, M.M., and Kapetanović, V., An electrochemical study of the adsorptive behaviour of varenicline and its interaction with DNA, J. Serb. Chem. Soc., 2012, vol. 77, p. 1409. https://doi.org/10.2298/JSC120420073R

    Article  CAS  Google Scholar 

  33. Lamani, S.D., Teradale, A.B., Unki, S.N., and Nandibewoor, S.T., Electrochemical oxidation and determination of methocarbamol at multi-walled carbon nanotubes modified glassy carbon electrode, Anal. Bioanal. Electrochem., 2016, vol. 8, p. 304.

    CAS  Google Scholar 

  34. Shah, A., Khan, A.M., Qureshi, R., Ansari, F.L., Nazar, M.F., and Shah, S.S., Redox behavior of anticancer chalcone on a glassy carbon electrode and evaluation of its interaction parameters with DNA, Int. J. Mol. Sci., 2008, vol. 9, p. 1424. https://doi.org/10.3390/ijms9081424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hajian, R. and Tan, G.H., Spectrophotometric and voltammetric studies on the interaction of 7-ethyl-10-hydroxycamptothecin (SN-38) as the metabolized compound of CPT-11 with ds-DNA, Asian J. Chem., 2013, vol. 25, p. 436. https://doi.org/10.14233/ajchem.2013.13147

    Article  CAS  Google Scholar 

  36. Mallappa, M., Gowda, B.G., and Mahesh, R.T., Mechanism of interaction of antibacterial drug moxifloxacin with herring sperm DNA: electrochemical and spectroscopic studies, Pharma Chem., 2014, vol. 6, p. 398.

    CAS  Google Scholar 

  37. Feng, Q., Li, N.-Q., and Jiang, Y.-Y., Electrochemical studies of porphyrin interacting with DNA and determination of DNA, Anal. Chim. Acta, 1997, vol. 344, p. 97. https://doi.org/10.1016/S0003-2670(97)00008-1

    Article  CAS  Google Scholar 

  38. Jalali, F. and Dorraji, P.S., Electrochemical and spectroscopic studies of the interaction between the neuroleptic drug, gabapentin, and DNA, J. Pharm. Biomed. Anal., 2012, vol. 70, p. 598. https://doi.org/10.1016/j.jpba.2012.06.005

    Article  CAS  PubMed  Google Scholar 

  39. Deepa, R.R., Arulraj, A.A.D., Mideen, A.K.A.S., Gandhidasan, R.R., and Vasantha, V.S.V.S., Evaluation of antioxidant property of quinones and calculation of their binding constant values with DNA by Electrochemical Technique, Pharma Chem., 2018, vol. 10, p. 69.

    CAS  Google Scholar 

  40. Rambabu, A., Kumar, M.P., Ganji, N., Daravath, S., and Shivaraj, DNA binding and cleavage, cytotoxicity and antimicrobial studies of Co(II), Ni(II), Cu(II) and Zn(II) complexes of 1-((E)-(4-(trifluoromethoxy)phenylimino)methyl)naphthalen-2-ol Schiff base, J. Biomol. Struct. Dyn., 2020, vol. 38, no. 1, p. 307. https://doi.org/10.1080/07391102.2019.1571945

    Article  CAS  PubMed  Google Scholar 

  41. Tao, M., Zhang, G., Xiong, C., and Pan, J., Characterization of the interaction between resmethrin and calf thymus DNA in vitro, New J. Chem., 2015, vol. 39, p. 3665. https://doi.org/10.1039/C4NJ02321H

    Article  CAS  Google Scholar 

  42. Zhang, G., Wang, L., Zhou, X., Li, Y., and Gong, D., Binding characteristics of sodium saccharin with calf thymus DNA in vitro, J. Agr. Food Chem., 2014, vol. 62, p. 991. https://doi.org/10.1021/jf405085g

    Article  CAS  Google Scholar 

  43. Sadeghi, M., Bayat, M., Cheraghi, S., Yari, K., Heydari, R., Dehdashtian, S., and Shamsipur, M., Binding studies of the anti-retroviral drug, efavirenz to calf thymus DNA using spectroscopic and voltammetric techniques, Luminescence, 2016, vol. 31, p. 108. https://doi.org/10.1002/bio.2931

    Article  CAS  PubMed  Google Scholar 

  44. Shen, H.-Y., Shao, X.-L., Xu, H., Li, J., and Pan, S.-D., In vitro study of DNA interaction with trichlorobenzenes by spectroscopic and voltammetric techniques, Int. J. Electrochem. Sci., 2011, vol. 6, p. 532.

    CAS  Google Scholar 

  45. Lin, J., Gao, C., and Liu, R., Interaction mechanism of Trp−Arg dipeptide with calf thymus DNA, J. Fluoresc., 2013, vol. 23, p. 921. https://doi.org/10.1007/s10895-013-1217-7

    Article  CAS  PubMed  Google Scholar 

  46. McKnight, R.E., Reisenauer, E., Pintado, M.V., Polasani, S.R., and Dixon, D.W., Substituent effect on the preferred DNA binding mode and affinity of a homologous series of naphthalene diimides, Bioorg. Med. Chem. Lett., 2011, vol. 21, p. 4288. https://doi.org/10.1016/j.bmcl.2011.05.069

    Article  CAS  PubMed  Google Scholar 

  47. Asadi, Z. and Nasrollahi, N., The effect of metal and substituent on DNA binding, cleavage activity, and cytotoxicity of new synthesized Schiff base ligands and Zn(II)complex, J. Mol. Struct., 2017, vol. 1147, p. 582. https://doi.org/10.1016/j.molstruc.2017.06.137

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Molecular graphics and analyses performed with UCSF Chimera, developed by the Resource for Biocomputing, Visualization, and Informatics at the University of California, San Francisco, with support from NIH P41-GM103311.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ender Biçer.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ender Biçer, Billy, T.A. & Macit, M. Voltammetric and Docking Investigation of the Binding Interaction between (E)-1-[(2-Phenoxyphenylimino)methyl]naphthalen-2-ol and Calf Thymus DNA. Russ J Electrochem 56, 1023–1030 (2020). https://doi.org/10.1134/S1023193520120046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193520120046

Keywords:

Navigation