Skip to main content
Log in

Electrocatalytic Determination of Salicylic Acid on Ni–Cr Alloy Modified Glassy Carbon Electrode

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Co-deposited nickel–chromium (Ni–Cr) onto the glassy carbon electrode (GCE) is successfully used as new amperometric sensor for the determination of salicylic acid (SA). SA is detected by a surface catalyzed oxidation, involving nickel(III) oxyhydroxides in alkaline solution. The performance of the biosensor Ni–Cr/GCE is characterized by cyclic voltammetry, chrono-amperometry, scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) and X-ray diffraction (XRD). The electrochemical behavior of the Ni–Cr alloy is qualitatively similar to that of pure nickel electrode. However, it is proposed that a higher degree of disorder of the oxyhydroxide layer structure is present on the top of the alloy. The electroactivity of Ni–Cr/GCE is studied as a function of the molar fraction (Xf%) of Cr3+ in the deposition bath. The results show that Ni–Cr/GCE exhibits a high electrocatalytic activity for SA oxidation. The Ni–Cr/GCE with 28Xf% Cr3+displays the best activity with a high response signal, a good sensitivity of 71.22 μA mM–1, a low detection limit of 0.1 μM (S/N = 3) and a fast response time (<3 s). Moreover, the reproducibility, selectivity and applicability of this electrochemical sensor are satisfactory evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Mikami, E., Goto, T., Ohno, T., Matsumoto, H., and Nishida, M., Simultaneous analysis of dehydroacetic acid, benzoic acid, sorbic acid and salicylic acid in cosmetic products by solid-phase extraction and high-performance liquid chromatography, J. Pharm. Biomed. Anal., 2002, vol. 28, p. 26.

    Google Scholar 

  2. Abdolmohammad-Zadeh, H., Kohansal, S., and Sadeghi, G.H., Nickel-aluminum layered double hydroxide as a nanosorbent for selective solid-phase extraction and spectrofluorometric determination of salicylic acid in pharmaceutical and biological samples, Talanta, 2011, vol. 84, p. 368.

    CAS  PubMed  Google Scholar 

  3. Saha, U. and Baksi, K., Spectrophotometric determination of salicylic acid in pharmaceutical formulations using copper(II) acetate as a color developer, Int.J. Pharm., Anal., 2001, vol. 23, p. 95.

    Google Scholar 

  4. Zhang, W.D., Xu, B., Hong, Y.-X., Yu, Y.-X., Ye, J.-S., and Zhang, J.-Q., Electrochemical oxidation of salicylic acid at well-aligned multiwalled carbon nanotube electrode and its detection, J. Solid State Electrochem., 2010, vol. 14, p. 1713.

    CAS  Google Scholar 

  5. Zhihua, W., Xiaole, L., Bowan, W., Fangping, W., and Xiaoquan, L., Voltammetric Determination of salicylic acid by molecularly imprinted film modified electrodes, Int. J. Polym. Anal. Chem., 2012, vol. 17, p. 122.

    Google Scholar 

  6. Supalkova, V., Petrek, J., Havel, L., Krizkova, S., Petrlova, J., Adam, V., Potesil, D., Babula, P., Beklova, M., Horna, A., and Kizek, R., Electrochemical sensors for detection of acetylsalicylic acid, Sensors, 2006, vol. 6, p. 1483.

    CAS  Google Scholar 

  7. Ruiz-Medina, A., Fernàndez-de Córdova, M. L., Ortega-Barrales, P., and Molina-Díaz, A., Flow-through UV spectrophotometric sensor for determination of (acetyl)salicylic acid in pharmaceutical preparations, Int. J. Pharm., 2001, vol. 216, p. 95.

    CAS  PubMed  Google Scholar 

  8. Kokot, Z. and Burda, K., Simultaneous determination of salicylic acid and acetylsalicylic acid in aspirin delayed-release tablet formulations by second derivative UV spectropohotometry, J. Pharm. Biomed. Anal., 1998, vol. 18, p. 871.

    CAS  PubMed  Google Scholar 

  9. Marcelo, M.S., Marcello, G.T., and Ronei, J.P., Combining standard addition method and second-order advantage for direct determination of salicylate in undiluted human plasma by spectrofluorimetry, Talanta, 2006, vol. 68, p. 1707.

    Google Scholar 

  10. Kakkar, T. and Mayersohn, M., Simultaneous quantitative analysis of methyl salicylate, ethyl salicylate and salicylic acid from biological fluids using gas chromatography–mass spectrometry, J. Chromatogr. B, 1998, vol. 718, p. 69.

    CAS  Google Scholar 

  11. Kees, F., Jehnich, D., and Grobecker, H., Simultaneous determination of acetylsalicylic acid and salicylic acid in human plasma by high-performance liquid chromatography, J. Chromatogr. B, 1996, vol. 677, p. 172.

    Google Scholar 

  12. Jen, J.F., Tsai, Y.Y., and Yang, T.C., Microdialysis of salicylic acid from viscous emulsion samples prior to high-performance liquid chromatographic determination, J. Chromatogr. A, 2001, vol. 912, p. 39.

    CAS  Google Scholar 

  13. Petrek, J., Havel, L., Petrlova, J., Adam, V., Potesil, D., Babula, P., and Kizek, R., Analysis of salicylic acid in willow barks and branches by an electrochemical method, Russ. J. Plant. Physiol., 2007, vol. 54, p. 553.

    CAS  Google Scholar 

  14. Torriero, A.A.J., Luco, J.M., Sereno, L., and Raba, J., Voltammetric determination of salicylic acid in pharmaceuticals formulations of acetylsalicylic acid, Talanta, 2004, vol. 62, p. 247.

    CAS  PubMed  Google Scholar 

  15. Rawlinson, S., McLister, A., Kanyong, P., and Davis, J., Rapid determination of salicylic acid at screen printed electrodes, Microchem. J., 2018, vol. 137, p. 71.

    CAS  Google Scholar 

  16. Park, J. and Eun, C., Electrochemical behavior and determination of salicylic acid at carbon-fiber electrodes, Electrochim. Acta, 2016, vol. 194, p. 346.

    CAS  Google Scholar 

  17. Wang, Z., Ai, F., Xu, Q., Yang, Q., Yu, J.H., Huang, W.H., and Zhao, Y.D., Electrocatalytic activity of salicylic acid on the platinum nanoparticles modified electrode by electrochemical deposition, Colloids Surf. B, 2010, vol. 76, p. 370.

    CAS  Google Scholar 

  18. Gualandi, I., Scavetta, E., Zappoli, S., and Tonelli, D., Electrocatalytic oxidation of salicylic acid by a cobalt hydrotalcite-like compound modified Pt electrode, Biosens. Bioelectron., 2011, vol. 26, p. 3200.

    CAS  PubMed  Google Scholar 

  19. Alizadeh, T. and Nayeri, S., Electrocatalytic oxidation of salicylic acid at a carbon paste electrode impregnated with cerium-doped zirconium oxide nanoparticles as a new sensing approach for salicylic acid determination, J. Solid State Electrochem., 2018, vol. 22, p. 1.

    Google Scholar 

  20. Doulache, M., Saidat, B., and Trari, M., Electrocatalytic performance of cobalt microparticles film-modified platinum disk electrode for amperometric detection of ascorbic acid, J. Anal. Chem., 2017, vol. 72, p. 333.

    CAS  Google Scholar 

  21. Wei, Y., Wanga, A., and Liu, Y., Development of a glassy carbon electrode modified with graphene/Au nanoparticles for determination of acetaminophen in pharmaceutical preparation, Russ. J. Electrochem., 2018, vol. 54, p. 1141.

    CAS  Google Scholar 

  22. Babu, K.J., Senthilkumar, N., Kim, A.R., and Kumar, G.G., Three-dimensional dendrite Cu–Co/reduced graphene oxide architectures on a disposable pencil graphite electrode as an electrochemical sensor for nonenzymatic glucose detection, Sens. Actuators B, 2017, vol. 241, p. 541.

    CAS  Google Scholar 

  23. Sanghavi, B.J., Kalambate, P.K., Karna, S.P., and Srivastava, A.K., Voltammetric determination of sumatriptan based on a graphene/gold nanoparticles/Nafion composite modified glassy carbon electrode, Talanta, 2014, vol. 120, p. 1.

    CAS  PubMed  Google Scholar 

  24. Tadayon, F., Vahed, S., and Bagheri, H., Au–Pd/reduced graphene oxide composite as a new sensing layer for electrochemical determination of ascorbic acid, acetaminophen and tyrosine, Mater. Sci. Eng. C, 2016, vol. 68, p. 805.

    CAS  Google Scholar 

  25. Safaei, M., Beitollahib, H., and Shishehborea, M.R., Simultaneous determination of epinephrine and folic acid using the Fe3O4@SiO2/GR Nanocomposite Modified Graphite, Russ. J. Electrochem., 2018, vol. 54, p. 851.

    CAS  Google Scholar 

  26. Zhao, C., Li, M., and Jiao, K., Determination of formaldehyde by staircase voltammetry based on its electrocatalytic oxidation at a nickel electrode, J. Anal. Chem., 2006, vol. 61, p. 1204.

    CAS  Google Scholar 

  27. Majdi, S., Jabbari, A., and Heli, H., Electrocatalytic oxidation of some amino acids on a nickel-curcumin complex modified glassy carbon electrode, J. Solid State Electrochem., 2007, vol. 11, p. 601.

    CAS  Google Scholar 

  28. Safavi, A., Maleki, N., and Farjami, E., Fabrication of a glucose sensor based on a novel nanocomposite electrode, Biosens. Bioelectron., 2009, vol. 24, p. 1655.

    CAS  PubMed  Google Scholar 

  29. Roushani, M., Shamsipur, M., and Pourmortazavi, S.M., Amperometric detection of glycine, L-Serine, and L‑Alanine using glassy carbon electrode modified by NiO nanoparticles, J. Appl. Electrochem., 2012, vol. 42, p. 1005.

    CAS  Google Scholar 

  30. Jafarian, M., Forouzandeh, F., Danaee, I., and Gobal, F., Electrocatalytic oxidation of glucose on Ni and NiCu alloy modified glassy carbon electrode, J. Solid State Electrochem., 2009, vol. 13, p. 1171.

    CAS  Google Scholar 

  31. Danaee, I., Jafarian, M., Mirzapoor, A., Gobal, F., and Mahjani, M.G., Electrooxidation of methanol on NiMn alloy modified graphite electrode, Electrochim. Acta, 2010, vol. 55, p. 2093.

    CAS  Google Scholar 

  32. Elahi, M.Y., Heli, H., Bathaie, S.Z., and Mousavi, M.F., Electrocatalytic oxidation of glucose at a Ni-curcumin modified glassy carbon electrode, J. Solid State Electrochem., 2007, vol. 11, p. 273.

    Google Scholar 

  33. Gholivanda, M.B., Pashabadi, A., Azadbakht, A., and Menati, S., A nano-structured Ni(II)-ACDA modified gold nanoparticle self-assembled electrode for electrocatalytic oxidation and determination of tryptophan, Electrochim. Acta, 2011, vol. 56, p. 4022.

    Google Scholar 

  34. Zheng, L. and Song, J.F., Nickel(II)-baicalein complex modified multiwall carbon nanotube paste electrode and its electrocatalytic oxidation toward glycine, Anal. Biochem., 2009, vol. 391, p. 56.

    CAS  PubMed  Google Scholar 

  35. Zhong, D.C., Aranishi, K., Singh, A.K., Demirci, U.B., and Xu, Q., The synergistic effect of Rh–Ni catalysts on the highly-efficient dehydrogenation of aqueous hydrazine borne for chemical hydrogen, Chem. Commun., 2012, vol. 48, p. 1945.

    Google Scholar 

  36. Jiang, H.L. and Xu, Q., Porous metal-organic framewerks as platforms for function application, Mater. J. Chem., 2011, vol. 21, p. 3705.

    Google Scholar 

  37. Tao, B., Zhang, J., Hui, S., and Wan, L., An amperometric ethanol sensor based on a Pd–Ni/SiNWs electrode, Sens. Actuators B, 2009, vol. 142, p. 298.

    CAS  Google Scholar 

  38. Mattos, I.L., Melo, D., and Zagatto, E.A.G., Nickel-chromium electrode as a detector in flow-injection amperometry: determination of glycerol, Anal. Sci., 1999, vol. 15, p. 537.

    Google Scholar 

  39. Ojani, R., Raoof, J.B., and Norouzi, B., Performance of glucose electrooxidation on Ni–Co composition dispersed on the poly (isonicotinic acid)(SDS) film, J. Solid State Electrochem., 2011, vol. 15, p. 1139.

    CAS  Google Scholar 

  40. Yeo, I.H. and Johnson, D.C., Electrochemical response of small organic molecules at nickel-copper alloy electrodes, J. Electroanal. Chem., 2001, vol. 495, p. 110.

    CAS  Google Scholar 

  41. Connors, K.A., Amidon, G.L., and Kennon, L., Chemical Stability of Pharmaceuticals, New York: Wiley, 1979.

    Google Scholar 

  42. Marioli, J.M. and Sereno, L.E., The potentiodynamic behavior of nickel–chromium (80 : 20) alloy electrodes in 0.10 N sodium hydroxide, Electrochim. Acta, 1995, vol. 40, p. 983.

    CAS  Google Scholar 

  43. Marioli, J.M., Luo, P., and Kuwana, T., Nickel–chromium alloy electrode as a carbohydrate detector for liquid chromatography, Anal. Chim. Acta, 1993, vol. 282, p. 571.

    CAS  Google Scholar 

  44. Bard, A.J. and Faulkner, L.R., Electrochemical Methods: Fundamentals and Applications, 2nd ed., John Wiley Press, 2001, p. 196.

    Google Scholar 

  45. Ghoreishi, S.M., Kashani, F.Z., Khoobi, A., and Enhessari, M., Fabrication of a nickel titanate nanoceramic modified electrode forelectrochemical studies and detection of salicylic acid, J. Mol. Liq., 2015, vol. 211, p. 970.

    CAS  Google Scholar 

  46. Kutner, W., Wang, J., Lher, M., and Buck, R.P., Analytical aspects of chemically modified electrodes: classification, critical evaluation and recommendations, Pure Appl. Chem., 1998, vol. 70, p. 1301.

    CAS  Google Scholar 

  47. Park, J. and Eun, C., Electrochemical behavior and determination of salicylic acid at carbon-fiber electrodes, Electrochim. Acta, 2016, vol. 194, p. 346.

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank Dr M. Izeroukkene for his assistance in the SEM characterization.

Funding

The work is supported financially by the faculty of Chemistry (Algiers).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Merzak Doulache.

Ethics declarations

The authors declare have no conflict of interest financial, personal or other relationships with other people, laboratories or organizations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merzak Doulache, Mohamed Trari Electrocatalytic Determination of Salicylic Acid on Ni–Cr Alloy Modified Glassy Carbon Electrode. Russ J Electrochem 56, 615–625 (2020). https://doi.org/10.1134/S1023193520080042

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193520080042

Keywords:

Navigation