Skip to main content
Log in

PtCu/C Materials Doped with Different Amounts of Gold as the Catalysts of Oxygen Electroreduction and Methanol Electrooxidation

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The effect of the amount of gold used as the dopant of PtCu nanoparticles on the structure of PtCuAu/Cu catalysts and their activity in the reactions of oxygen reduction and methanol electrooxidation is studied. The PtCuAu/C materials containing from 3 to 20% of gold are prepared by galvanic displacement of copper atoms by gold atoms on the surface of already prepared PtCu nanoparticles. The addition of 5 at % Au to the composition of nanoparticles doubles their activity in the methanol oxidation and increases their activity in the oxygen reduction by a factor of 1.7 as compared with the commercial Pt/C material JM40. This study confirms that multicomponent platinum-containing nanoparticles supported by a highly disperse carbon material and having gold atoms deposited on their surface show promise as the efficient catalysts for the methanol fuel cells. In contrast, the materials containing 10 at % Au and more are characterized by the presence of gold nanoparticles on the carbon support surface and exhibit the lower catalytic activity as compared with those containing less amounts of gold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Grinberg, V.A., Kulova, T.L., Maiorova, N.A., Dobrokhotova, Zh.V., Pasynskii, A.A., Skundin, A.M., and Khazova, O.A., Nanostructured catalysts for cathodes of oxygen-hydrogen fuel cells, Russ. J. Electrochem., 2007. vol. 43. p. 75.

    Article  CAS  Google Scholar 

  2. Yaroslavtsev, A.B., Dobrovolsky, Yu.A., Shaglaeva, N., Frolova, L.A., Gerasimova, E.V., and Sanginov E.A., Nanostructured materials for low-temperature fuel cells, Russ. Chem. Rev., 2012. vol. 81. p. 191.

    Article  CAS  Google Scholar 

  3. Martin, S., Martinez-Vazquez, B., Garcia-Ybarra, P.L., and Castillo, J.L., Peak utilization of catalyst with ultra-low Pt loaded PEM fuel cell electrodes prepared by the electrospray method, J. Power Sources, 2013, vol. 229, p. 179.

    Article  CAS  Google Scholar 

  4. Liu, Z.L., Ling, X.Y., Su, X.D., and Lee, J.Y., Carbon-supported Pt and PtRu nanoparticles as catalysts for a direct methanol fuel cell, J. Phys. Chem., 2004, vol. 108, p. 8264.

    Article  Google Scholar 

  5. Xu, C.X., Hou, J.G., Pang, X.H., Li, X.J., Zhu, M.L., and Tang, B.Y., Nanoporous PtCo and PtNi alloy ribbons for methanol electrooxidation, Int. J. Hydrogen Energy, 2012, vol. 37, p. 10489.

    Article  CAS  Google Scholar 

  6. Cui, X.Z., Shi, J.L., Zhang, L.X., Ruan, M.L., and Gao, J.H., PtCo supported on ordered mesoporous carbon as an electrode catalyst for methanol oxidation, Carbon, 2009, vol. 47, p. 186.

    Article  CAS  Google Scholar 

  7. Xu, C., Liu, Y., Wang, J., Geng, H., and Qiu, H., Fabrication of nanoporous Cu–Pt(Pd) core/shell structure by galvanic replacement and its application in electrocatalysis, ACS Appl. Mater. Interfaces, 2011, vol. 3, p. 4626.

    Article  CAS  Google Scholar 

  8. Suntivich, J., Xu, Z.C., Carlton, C.E., Kim, J.Y., Han, B.H., Lee, S.W., Bonnet, N., Marzari, N., Allard, L.F., Gasteiger, H.A., Hamad-Schifferli, K., and Horn, Y.S., Surface composition tuning of Au–Pt bimetallic nanoparticles for enhanced carbon monoxide and methanol electro-oxidation, J. Am. Chem. Soc., 2013, vol. 135, p. 7985.

    Article  CAS  Google Scholar 

  9. Jeon, M.K., Zhang, Y., and McGinn, P.J., A comparative study of PtCo, PtCr, and PtCoCr catalysts for oxygen electro-reduction reaction, Electrochim. Acta, 2010, vol. 55, p. 5318.

    Article  CAS  Google Scholar 

  10. Tarasevich, M.R., Bogdanovskaya, V.A., and Andreev, V.N., PtCoCr/C electrocatalysts for proton-conducting polymer electrolyte fuel cells, Catalysis in Industry, 2014, vol. 6 (3), p. 159.

    Article  Google Scholar 

  11. You, G., Jiang, J., Li, M., Li, L., Tang, D., Zhang, J., Zeng, X.C., and He, R., PtPd(111) surface versus PtAu(111) surface: Which one is more active for methanol oxidation?, ACS Catal., 2018, vol. 8, p. 132.

    Article  CAS  Google Scholar 

  12. Xie, X.-W., Lv, J.-J., Liu, L., Wang, A.-J., Feng, J.-J., and Xu, Q.-Q., Amino acid-assisted fabrication of uniform dendrite-like PtAu porous nanoclusters as highly efficient electrocatalyst for methanol oxidation and oxygen reduction reactions, Int. J. Hydrogen Energy, 2017, vol. 42, p. 2104.

    Article  CAS  Google Scholar 

  13. Feng, Y.-Y., Song, G.-H., Zhang, Q., Hu, H.-S., Feng, M.-Y., Wang, J.-Y., and Kong, D.-S., Catalytic performance of non-alloyed bimetallic PtAu electrocatalysts for methanol oxidation reaction, Int. J. Hydrogen Energy, 2017, vol. 42, p. 30109.

    Article  CAS  Google Scholar 

  14. Bhunia, K., Khilari, S., and Pradhan, D., Trimetallic PtAuNi alloy nanoparticles as an efficient electrocatalyst for the methanol electrooxidation reaction, Dalton Trans., 2017, vol. 46, p. 15558.

    Article  CAS  Google Scholar 

  15. Wang, X., Zhang, L., Gong, H., Zhu, Y., Zhao, H., and Fu, Y., Dealloyed PtAuCu electrocatalyst to improve the activity and stability towards both oxygen reduction and methanol oxidation reactions, Electrochim. Acta, 2016, vol. 212, p. 277.

    Article  CAS  Google Scholar 

  16. Gatalo, M., Jovanovič, P., Polymeros, G., Grote, J.-P., Pavlišič, A., Ruiz- Zepeda, F., Šelih, V.S., Šala, M., Hočevar, S., Bele, M., Mayrhofer, K.J.J., Hodnik, N., and Gaberšček, M., Positive effect of surface doping with Au on the stability of Pt-based electrocatalysts, ACS Catal., 2016, vol. 6, p. 1630.

    Article  CAS  Google Scholar 

  17. Guterman, V.E., Belenov, S.V., Pakharev, A.Yu., Min, M., Tabachkova, N.Yu., Mikheykina, E.B., Vysochina, L.L., and Lastovina, T.A., Pt–M/C (M = Cu, Ag) electrocatalysts with an inhomogeneous distribution of metals in the nanoparticles, Int. J. Hydrogen Energy, 2016, vol. 41, p. 1609.

    Article  CAS  Google Scholar 

  18. Alekseenko, A.A., Guterman, V.E., Volochaev, V.A., and Belenov, S.V., Effect of wet synthesis conditions on the microstructure and active surface area of Pt/C catalysts, Inorg. Mater., 2015, vol. 51, no. 12. p. 1258.

    Article  CAS  Google Scholar 

  19. Pryadchenko, V.V., Srabionyan, V.V., Kurzin, A.A., Bulat, N.V., Shemet, D.B., Avakyan, L.A., Belenov, S.V., Volochaev, V.A., Zizak, I., Guterman, V.E., and Bugaev, L.A., Bimetallic PtCu core–shell nanoparticles in PtCu/C electrocatalysts: Structural and electrochemical characterization, Appl. Catal., A, 2016, vol. 525, p. 226.

  20. Alekseenko, A.A., Belenov, S.V., Menshikov, V.S., and Guterman, V.E., Pt(Cu)/C Electrocatalysts with Low Platinum Content, Russ. J. Electrochem., 2018, vol. 54, p. 415.

    Article  CAS  Google Scholar 

  21. Alekseenko, A.A., Guterman, V.E., Belenov, S.V., Menshikov, V.S., Tabachkova, N.Y., Safronenko, O.I., and Moguchikh, E.A., Pt/C electrocatalysts based on the nanoparticles with the gradient structure, Int. J. Hydrogen Energy, 2018, vol. 43, p. 3676.

    Article  CAS  Google Scholar 

  22. Langford, J.I. and Wilson, A.J.C., Scherrer after sixty years: A survey and some new results in the determination of crystallite size, J. Appl. Crystallogr., 1978, vol. 11, p. 102.

    Article  CAS  Google Scholar 

  23. Shinozaki, K., Zack, J.W., Pylypenko, S., Pivovar, B.S., and Kocha, S.S., Oxygen reduction reaction measurements on platinum electrocatalysts utilizing rotating disk electrode technique: I. Impact of impurities, measurement protocols and applied corrections, J. Electrochem. Soc., 2015, vol. 162, p. 1144.

    Article  Google Scholar 

  24. Guterman, V.E., Belenov, S.V., Alekseenko, A.A., Tabachkova, N.Y., and Volochaev, V.A., The relationship between activity and stability of deposited platinum-carbon electrocatalysts, Russ. J. Electrochem., 2017, vol. 53, p. 531.

    Article  CAS  Google Scholar 

  25. Baturina, O.A., Aubuchon, S.R., and Wynne, K.J., Thermal stability in air of Pt/C catalysts and PEM fuel cell catalyst layers, Chem. Mater., 2006, vol. 18, p. 1498.

    Article  CAS  Google Scholar 

  26. Stevens, D.A. and Dahn, J.R., Thermal degradation of the support in carbon-supported platinum electrocatalysts for PEM fuel cells, Carbon, 2005, vol. 43, p. 179.

    Article  CAS  Google Scholar 

  27. Sellin, R., Clacens, Jean-M., and Coutanceau, C., A thermogravimetric analysis/mass spectroscopy study of the thermal and chemical stability of carbon in the Pt/C catalytic system, Carbon, 2010, vol. 48, p. 2244.

    Article  CAS  Google Scholar 

  28. Guterman, V.E., Belenov, S.V., Krikov, V.V., Vysochina, L.L., Yohannes, W., Tabachkova, N.Yu., and Balakshina, E.N., Reasons for the differences in the kinetics of thermal oxidation of the support in Pt/C electrocatalysts, J. Phys. Chem., 2014, vol. 118, p. 23835.

    CAS  Google Scholar 

  29. Ammam, M. and Bradley Easton, E., PtCu/C and Pt(Cu)/C catalysts: Synthesis, characterization and catalytic activity towards ethanol electrooxidation, J. Power Sources, 2013, vol. 222, p. 79.

    Article  CAS  Google Scholar 

  30. Zhu, H., Li, X., and Wang, F., Synthesis and characterization of Cu@Pt/C core–shell structured catalysts for proton exchange membrane fuel cell, Int. J. Hydrogen Energy, 2011, vol. 36, p. 9151.

    Article  CAS  Google Scholar 

  31. Wang, Y., Zhou, H., Sun, P., and Chen, T., Exceptional methanol electro-oxidation activity by bimetallic concave and dendritic Pt–Cu nanocrystals catalysts, J. Power Sources, 2014, vol. 245, p. 663.

    Article  CAS  Google Scholar 

  32. Deivaraj, T.C., Chen, W., and Yang Lee, J., Preparation of PtNi nanoparticles for the electrocatalytic oxidation of methanol, J. Mater. Chem., 2003, vol. 13, p. 2555.

    Article  CAS  Google Scholar 

  33. Zeng, J., Yang J., Yang, Lee J., and Zhou, W., Preparation of carbon-supported core–shell Au–Pt nanoparticles for methanol oxidation reaction: The promotional effect of the Au core, J. Phys. Chem. B, 2006, vol. 110, p. 20606.

    Google Scholar 

  34. Lima, A., Coutanceau, C., Léger, J.-M., and Lamy, C., Investigation of ternary catalysts for methanol electrooxidation, J. Appl. Electrochem., 2001, vol. 31, p. 379.

    Article  CAS  Google Scholar 

Download references

Funding

The study was financially supported by the Russian Scientific Foundation (project no. 18-73-00161).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Belenov.

Additional information

Translated by T. Safonova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belenov, S.V., Men’shchikov, V.S., Nikulin, A.Y. et al. PtCu/C Materials Doped with Different Amounts of Gold as the Catalysts of Oxygen Electroreduction and Methanol Electrooxidation. Russ J Electrochem 56, 660–668 (2020). https://doi.org/10.1134/S1023193520080029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193520080029

Keywords:

Navigation